in

Unravelling microalgal-bacterial interactions in aquatic ecosystems through 16S rRNA gene-based co-occurrence networks

  • Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature https://doi.org/10.1038/nature04056 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Kazamia, E. et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2012.02733.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • Bunbury, F. et al. Exploring the onset of B12-based mutualisms using a recently evolved Chlamydomonas auxotroph and B12-producing bacteria. Environ. Microbiol. 24, 3134–3147 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butler, A. Acquisition and utilization of transition metal ions by marine organisms. Science https://doi.org/10.1126/science.281.5374.207 (1998).

    Article 
    PubMed 

    Google Scholar 

  • Amin, S. A. et al. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0905512106 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature https://doi.org/10.1038/nature14488 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mayali, X. & Azam, F. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. https://doi.org/10.1111/j.1550-7408.2004.tb00538.x (2004).

    Article 
    PubMed 

    Google Scholar 

  • Bagwell, C. E. et al. Discovery of bioactive metabolites in biofuel microalgae that offer protection against predatory bacteria. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00516 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoeger, A. L., Jehmlich, N., Kipping, L., Griehl, C. & Noll, M. Associated bacterial microbiome responds opportunistic once algal host Scenedesmus vacuolatus is attacked by endoparasite Amoeboaphelidium protococcarum. Sci. Rep. https://doi.org/10.1038/s41598-022-17114-1 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mars Brisbin, M., Mitarai, S., Saito, M. A. & Alexander, H. Microbiomes of bloom-forming Phaeocystis algae are stable and consistently recruited, with both symbiotic and opportunistic modes. ISME J. https://doi.org/10.1038/s41396-022-01263-2 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Milici, M. et al. Co-occurrence analysis of microbial taxa in the Atlantic ocean reveals high connectivity in the free-living bacterioplankton. Front. Microbiol. 7, 1–20 (2016).

    Article 

    Google Scholar 

  • Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Tucker, A. E. & Brown, S. P. Sampling a gradient of red snow algae bloom density reveals novel connections between microbial communities and environmental features. Sci. Rep. 12, 1–15 (2022).

    Article 

    Google Scholar 

  • Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chun, S. J. et al. Network analysis reveals succession of microcystis genotypes accompanying distinctive microbial modules with recurrent patterns. Water Res. https://doi.org/10.1016/j.watres.2019.115326 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Huang, S. Back to the biology in systems biology: What can we learn from biomolecular networks?. Briefings Funct. Genom. Proteom. https://doi.org/10.1093/bfgp/2.4.279 (2004).

    Article 

    Google Scholar 

  • Ma’ayan, A. Introduction to network analysis in systems biology. Sci. Signal. https://doi.org/10.1126/scisignal.2001965 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, R. J., Howe, A. & Hofmockel, K. S. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front. Microbiol. 5, 1–10 (2014).

    Article 

    Google Scholar 

  • Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro3417 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Chafee, M. et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 12, 237–252 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Zamkovaya, T., Foster, J. S., de Crécy-Lagard, V. & Conesa, A. A network approach to elucidate and prioritize microbial dark matter in microbial communities. ISME J. 15, 228–244 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science https://doi.org/10.1126/science.1262073 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Bennke, C. M. et al. The distribution of phytoplankton in the Baltic Sea assessed by a prokaryotic 16S rRNA gene primer system. J. Plankton Res. 40, 244–254 (2018).

    Article 
    CAS 

    Google Scholar 

  • Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00219 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. https://doi.org/10.1038/nmicrobiol.2016.5 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature https://doi.org/10.1038/nature24621 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonzalez, A. et al. Qiita: Rapid, web-enabled microbiome meta-analysis. Nat. Methods https://doi.org/10.1038/s41592-018-0141-9 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1000080107 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. https://doi.org/10.1038/ismej.2012.8 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0209-9 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. https://doi.org/10.14806/ej.17.1.200 (2011).

    Article 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods https://doi.org/10.1038/nmeth.3869 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome https://doi.org/10.1186/s40168-018-0470-z (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Decelle, J. et al. PhytoREF: A reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Major oceanic 16S/18S databases in qiime2 format. https://github.com/ndu-invitae/Oceanic_database/tree/master/PhytoRef.

  • Hemprich-Bennett, D. R., Oliveira, H. F. M., Le Comber, S. C., Rossiter, S. J. & Clare, E. L. Assessing the impact of taxon resolution on network structure. Ecology https://doi.org/10.1002/ecy.3256 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: Rapid and scalable correlation estimation for compositional data. Bioinformatics https://doi.org/10.1093/bioinformatics/bty734 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1002687 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Csardi, G., & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Systems. igraph Softw. Packag. (2006).

  • Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. https://doi.org/10.1101/gr.1239303 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Assenov, Y., Ramírez, F., Schelhorn, S. E. S. E., Lengauer, T. & Albrecht, M. Computing topological parameters of biological networks. Bioinformatics https://doi.org/10.1093/bioinformatics/btm554 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Barabási, A. L. Scale-free networks: A decade and beyond. Science https://doi.org/10.1126/science.1173299 (2009).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Morris, J. H. et al. ClusterMaker: A multi-algorithm clustering plugin for cytoscape. BMC Bioinform. https://doi.org/10.1186/1471-2105-12-436 (2011).

    Article 

    Google Scholar 

  • Van Dongen, S. & Abreu-Goodger, C. Using MCL to extract clusters from networks. Methods Mol. Biol. https://doi.org/10.1007/978-1-61779-361-5_15 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Raivo, K. Pheatmap: Pretty heatmaps. R Pacakage Version (2012).

  • Albert, R., Jeong, H. & Barabási, A. L. Diameter of the world-wide web. Nature https://doi.org/10.1038/43601 (1999).

    Article 

    Google Scholar 

  • Eisenberg, E. & Levanon, E. Y. Preferential attachment in the protein network evolution. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.91.138701 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Ma, B. et al. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome 8, 82 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biol. Biochem. 105, 227–235 (2017).

    Article 
    CAS 

    Google Scholar 

  • Goecke, F., Thiel, V., Wiese, J., Labes, A. & Imhoff, J. F. Algae as an important environment for bacteria—Phylogenetic relationships among new bacterial species isolated from algae. Phycologia https://doi.org/10.2216/12-24.1 (2013).

    Article 

    Google Scholar 

  • Krohn-Molt, I. et al. Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01641-13 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woebken, D. et al. Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes. ISME J. https://doi.org/10.1038/ismej.2007.63 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Faria, M. et al. Planctomycetes attached to algal surfaces: Insight into their genomes. Genomics https://doi.org/10.1016/j.ygeno.2017.10.007 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Barbeyron, T., L’Haridon, S., Corre, E., Kloareg, B. & Potin, P. Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. Nov.. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/00207713-51-3-985 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Nedashkovskaya, O. I. et al. Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kütz) Kornm. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/ijs.0.02626-0 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Kim, B. H., Ramanan, R., Cho, D. H., Oh, H. M. & Kim, H. S. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2014.07.015 (2014).

    Article 

    Google Scholar 

  • Rivas, M. O., Vargas, P. & Riquelme, C. E. Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb. Ecol. https://doi.org/10.1007/s00248-010-9686-6 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Cole, J. J. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. https://doi.org/10.1146/annurev.es.13.110182.001451 (1982).

    Article 

    Google Scholar 

  • Fulbright, S. P. et al. Bacterial community changes in an industrial algae production system. Algal Res. https://doi.org/10.1016/j.algal.2017.09.010 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, J. et al. Microbial community structure and associations during a marine dinoflagellate bloom. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01201 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simon, M., Glöckner, F. O. & Amann, R. Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aquat. Microb. Ecol. https://doi.org/10.3354/ame018275 (1999).

    Article 

    Google Scholar 

  • Brussaard, C. P. D., Mari, X., Van Bleijswijk, J. D. L. & Veldhuis, M. J. W. A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics: II. Significance for the microbial community. Harmful Algae https://doi.org/10.1016/j.hal.2004.12.012 (2005).

    Article 

    Google Scholar 

  • Janse, I., Zwart, G., Van der Maarel, M. J. E. C. & Gottschal, J. C. Composition of the bacterial community degrading Phaeocystis mucopolysaccharides in enrichment cultures. Aquat. Microb. Ecol. https://doi.org/10.3354/ame022119 (2000).

    Article 

    Google Scholar 

  • Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2005.00759.x (2005).

    Article 
    PubMed 

    Google Scholar 

  • Sapp, M. et al. Species-specific bacterial communities in the phycosphere of microalgae?. Microb. Ecol. https://doi.org/10.1007/s00248-006-9162-5 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Sapp, M., Wichels, A. & Gerdts, G. Impacts of cultivation of marine diatoms on the associated bacterial community. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02274-06 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Milici, M. et al. Bacterioplankton biogeography of the Atlantic ocean: A case study of the distance-decay relationship. Front. Microbiol. 7, 1–15 (2016).

    Article 

    Google Scholar 

  • Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. https://doi.org/10.1038/s41467-021-25646-9 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: An unexpected contribution of verrucomicrobia. PLoS ONE https://doi.org/10.1371/journal.pone.0035314 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dell’Anno, F. et al. Highly contaminated marine sediments can host rare bacterial taxa potentially useful for bioremediation. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.584850 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Newton, R. J. et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. https://doi.org/10.1038/ismej.2009.150 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Ann. Rev. Mar. Sci. https://doi.org/10.1146/annurev-marine-120710-100912 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1413137112 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Proulx, S. R., Promislow, D. E. L. & Phillips, P. C. Network thinking in ecology and evolution. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2005.04.004 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Coelho, F. J. R. C. et al. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz. Sci. Rep. 6, 1–10 (2016).

    Article 

    Google Scholar 

  • Queiroz, L. L. et al. Bacterial diversity in deep-sea sediments under influence of asphalt seep at the São Paulo Plateau. Antonie van Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 8, 9. https://doi.org/10.1007/s10482-020-01384-8 (2020).

    Article 
    CAS 

    Google Scholar 

  • de Voogd, N. J., Cleary, D. F. R., Polónia, A. R. M. & Gomes, N. C. M. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiv019 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Vigneron, A. et al. Multiple strategies for light-harvesting, photoprotection, and carbon flow in high latitude microbial mats. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02881 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pushpakumara, B. L. D. U., Tandon, K., Willis, A. & Verbruggen, H. The bacterial microbiome of the coral skeleton algal symbiont Ostreobium shows preferential associations and signatures of phylosymbiosis. bioRxiv https://doi.org/10.1101/2022.12.13.520198 (2022).

    Article 

    Google Scholar 

  • Lage, O. M. & Bondoso, J. Planctomycetes diversity associated with macroalgae. FEMS Microbiol. Ecol. https://doi.org/10.1111/j.1574-6941.2011.01168.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • Longford, S. R. et al. Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquat. Microb. Ecol. https://doi.org/10.3354/ame048217 (2007).

    Article 

    Google Scholar 

  • Bengtsson, M. M. & Øvreås, L. Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol. https://doi.org/10.1186/1471-2180-10-261 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ludington, W. B. et al. Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing: A diverse anammox community dominates nitrate-rich groundwater. PLoS ONE https://doi.org/10.1371/journal.pone.0174930 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vidal-Melgosa, S. et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat. Commun. 12, 1–13 (2021).

    Article 

    Google Scholar 

  • Walker, A. M., Leigh, M. B. & Mincks, S. L. Patterns in benthic microbial community structure across environmental gradients in the beaufort sea shelf and slope. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.581124 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morris, R. M., Longnecker, K. & Giovannoni, S. J. Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2006.01029.x (2006).

    Article 
    PubMed 

    Google Scholar 

  • Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. https://doi.org/10.1038/s41564-020-0720-2 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Bohórquez, J. et al. Different types of diatom-derived extracellular polymeric substances drive changes in heterotrophic bacterial communities from intertidal sediments. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00245 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Landa, M. et al. Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study. Environ. Microbiol. https://doi.org/10.1111/1462-2920.12242 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Orsi, W. D. et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. https://doi.org/10.1038/ismej.2016.20 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Featured video: Investigating our blue ocean planet

    How to pull carbon dioxide out of seawater