in

Water masses shape pico-nano eukaryotic communities of the Weddell Sea

  • Guillou, L. et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ. Microbiol. 10, 3349–3365 (2008).

    Article 
    CAS 

    Google Scholar 

  • Massana, R. Eukaryotic picoplankton in surface oceans. Annu. Rev. Microbiol. 65, 91–110 (2011).

    Article 
    CAS 

    Google Scholar 

  • Rocke, E., Pachiadaki, M. G., Cobban, A., Kujawinski, E. B. & Edgcomb, V. P. Protist community grazing on prokaryotic prey in deep ocean water masses. PLoS ONE 10, e0124505 (2015).

    Article 

    Google Scholar 

  • de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    Article 

    Google Scholar 

  • Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cordier, T. et al. Patterns of eukaryotic diversity from the surface to the deep-ocean sediment. Sci. Adv. 8, https://doi.org/10.1126/sciadv.abj9309 (2022).

  • Giner, C. R. et al. Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. ISME J. 14, 437–449 (2020).

    Article 

    Google Scholar 

  • Obiol, A. et al. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol. Ecol. Resour. 20, 718–731 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pernice, M. C. et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958 (2016).

    Article 

    Google Scholar 

  • Santoferrara, L. et al. Perspectives from ten years of protist studies by high‐throughput metabarcoding. J. Eukaryot. Microbiol. 67, 612–622 (2020).

    Article 

    Google Scholar 

  • Schoenle, A. et al. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun. Biol. 4, 1–10 (2021).

    Article 

    Google Scholar 

  • Sommeria-Klein, G. et al. Global drivers of eukaryotic plankton biogeography in the sunlit ocean. Science 374, 594–599 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tremblay, J. É. et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog. Oceanogr. 139, 171–196 (2015).

    Article 

    Google Scholar 

  • Zoccarato, L., Pallavicini, A., Cerino, F., Umani, S. F. & Celussi, M. Water mass dynamics shape Ross Sea protist communities in mesopelagic and bathypelagic layers. Prog. Oceanogr. 149, 16–26 (2016).

    Article 

    Google Scholar 

  • Biggs, T. E. G., Huisman, J. & Brussaard, C. P. D. Viral lysis modifies seasonal phytoplankton dynamics and carbon flow in the Southern Ocean. ISME J. 15, 3615–3622 (2021).

    Article 
    CAS 

    Google Scholar 

  • Clarke, L. J., Bestley, S., Bissett, A. & Deagle, B. E. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 13, 734–737 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gast, R. J., Fay, S. A. & Sanders, R. W. Mixotrophic activity and diversity of Antarctic marine protists in austral summer. Front. Mar. Sci. 5, 13 (2018).

    Article 

    Google Scholar 

  • Grattepanche, J. D., Jeffrey, W. H., Gast, R. J. & Sanders, R. W. Diversity of microbial eukaryotes along the West Antarctic Peninsula in austral spring. Front. Microbiol. 13, 844856 (2022).

    Article 

    Google Scholar 

  • Hamilton, M. et al. Spatiotemporal variations in Antarctic protistan communities highlight phytoplankton diversity and seasonal dominance by a novel cryptophyte lineage. mBio 12, e0297321 (2021).

    Article 

    Google Scholar 

  • Lin, Y. et al. Decline in plankton diversity and carbon flux with reduced sea ice extent along the Western Antarctic Peninsula. Nat. Commun. 12, 4948 (2021).

    Article 
    CAS 

    Google Scholar 

  • Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. 12, 5483 (2021).

    Article 
    CAS 

    Google Scholar 

  • Vernet, M. et al. The Weddell Gyre, Southern Ocean: present knowledge and future challenges. Rev. Geophysics 57, 623–708 (2019).

    Article 

    Google Scholar 

  • Callahan, J. E. The structure and circulation of deep water in the Antarctic. Deep‐Sea Res. 19, 563–575 (1972).

    Google Scholar 

  • Janout, M. A. et al. FRIS revisited in 2018: on the circulation and water masses at the Filchner and Ronne ice shelves in the southern Weddell Sea. J. Geophys. Res.: Oceans 126, e2021JC017269 (2021).

    Article 

    Google Scholar 

  • Orsi, A. H., Smethie, W. M. & Bullister, J. L. On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res. 107, 3122 (2002).

    Article 

    Google Scholar 

  • Hoppema, M., Fahrbach, E. & Schröder, M. On the total carbon dioxide and oxygen signature of the circumpolar deep water in the Weddell Gyre. Oceanol. Acta 20, 783–798 (1997).

    CAS 

    Google Scholar 

  • Karstensen, J. & Tomczak, M. Age determination of mixed water masses using CFC and oxygen data. J. Geophys. Res. 103, 18599–18609 (1998).

    Article 
    CAS 

    Google Scholar 

  • De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).

    Article 

    Google Scholar 

  • De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).

    Article 

    Google Scholar 

  • Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymetrical approach. Ecol. Monogr. 67, 345–366 (1997).

    Google Scholar 

  • Agogué, H., Lamy, D., Neal, P. R., Sogin, M. L. & Herndl, G. J. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol. Ecol. 20, 258–274 (2011).

    Article 

    Google Scholar 

  • Celussi, M., Bergamasco, A., Cataletto, B., Umani, S. F. & Del Negro, P. Water masses bacterial community structure and microbial activities in the Ross Sea, Antarctica. Antarct. Sci. 22, 361–370 (2010).

    Article 

    Google Scholar 

  • Galand, P. E., Potvin, M., Casamayor, E. O. & Lovejoy, C. Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J. 4, 564–576 (2010).

    Article 

    Google Scholar 

  • Hamdan, L. J. Ocean currents shape the microbiome of Arctic marine sediments. ISME J. 7, 685–696 (2013).

    Article 
    CAS 

    Google Scholar 

  • Wilkins, D., van Sebille, E., Rintoul, S. R., Lauro, F. M. & Cavicchioli, R. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat. Commun. 4, 2457 (2013).

    Article 

    Google Scholar 

  • Flegontova, O. et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065 (2016).

    Article 
    CAS 

    Google Scholar 

  • Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).

    Article 
    CAS 

    Google Scholar 

  • Jeong, H. J. et al. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. 45, 65–91 (2010).

    Article 
    CAS 

    Google Scholar 

  • Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. Mixotrophy in the marine Plankton. Ann. Rev. Mar. Sci. 9, 311–335 (2016).

    Article 

    Google Scholar 

  • Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gutierrez-Rodriguez, A. et al. High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding. ISME J. 13, 964–976 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lampitt, R. S., Salter, I. & Johns, D. Radiolaria: major exporters of organic carbon to the deep ocean. Glob. Biogeochem. Cycles 23, GB1010 (2009).

    Article 

    Google Scholar 

  • Suzuki, N. & Not, F. In Marine Protists: Diversity and Dynamics 179–222 (Springer Japan, 2015).

  • Decelle, J. et al. Diversity, ecology and biogeochemistry of cyst-forming Acantharia (Radiolaria) in the oceans. PLoS ONE 8, e53598 (2013).

    Article 
    CAS 

    Google Scholar 

  • Tashyreva, D. et al. Diplonemids—a review on “new“ flagellates on the oceanic block. Protist 173, 125868 (2022).

    Article 
    CAS 

    Google Scholar 

  • Flegontova, O. et al. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ. Microbiol 22, 4014–4031 (2020).

    Article 
    CAS 

    Google Scholar 

  • Xu, D. et al. Microbial eukaryote diversity and activity in the water column of the South China sea based on DNA and RNA high throughput sequencing. Front. Microbiol. 8, 1121 (2017).

    Article 

    Google Scholar 

  • Bråte, J. et al. Radiolaria associated with large diversity of marine alveolates. Protist 163, 767–777 (2012).

    Article 

    Google Scholar 

  • Strassert, J. F. H. et al. Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates. ISME J. 12, 304–308 (2017).

    Article 

    Google Scholar 

  • Yabuki, A. & Tame, A. Phylogeny and reclassification of Hemistasia phaeocysticola (Scherffel) Elbrächter & Schnepf, 1996. J. Eukaryot. Microbiol. 62, 426–429 (2015).

    Article 

    Google Scholar 

  • Larsen, J. & Patterson, J. Some flagellates (Protista) from tropical marine sediments. J. Nat. Hist. 24, 801–937 (1990).

    Article 

    Google Scholar 

  • Prokopchuk, G. et al. Trophic flexibility of marine diplonemids – switching from osmotrophy to bacterivory. ISME J. 16, 1409–1419 (2022).

    Article 
    CAS 

    Google Scholar 

  • Arístegui, J. & Gasol, J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 54, 1501–1529 (2009).

    Article 

    Google Scholar 

  • Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).

    Article 

    Google Scholar 

  • Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420 (2015).

    Article 

    Google Scholar 

  • Kolisko, M. et al. EukRef-excavates: seven curated SSU ribosomal RNA gene databases. Database 2020, baaa080 (2020).

    Google Scholar 

  • Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019).

    Article 

    Google Scholar 

  • Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083 (2019).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Half a century of rising extinction risk of coral reef sharks and rays

    Preparing to be prepared