in

Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems

  • Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).

    Article 
    CAS 

    Google Scholar 

  • DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020).

    Article 
    CAS 

    Google Scholar 

  • Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).

    Article 

    Google Scholar 

  • Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).

    Article 
    CAS 

    Google Scholar 

  • IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • Gazol, A. et al. Forest resilience to drought varies across biomes. Glob. Change Biol. 24, 2143–2158 (2018).

  • Wu, X. et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Change Biol. 24, 504–516 (2018).

    Article 

    Google Scholar 

  • Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

    Article 
    CAS 

    Google Scholar 

  • Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).

    Article 

    Google Scholar 

  • Kannenberg, S. A. et al. Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecol. Lett. 22, 119–127 (2019).

    Article 

    Google Scholar 

  • Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).

    Article 

    Google Scholar 

  • Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).

    Article 

    Google Scholar 

  • Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).

    Article 
    CAS 

    Google Scholar 

  • Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lian, X. et al. Seasonal biological carryover dominates northern vegetation growth. Nat. Commun. 12, 983 (2021).

  • Myneni, R. B. et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).

    Article 
    CAS 

    Google Scholar 

  • Jeong, S. J. et al. Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests. Remote Sens. Environ. 190, 178–187 (2017).

    Article 

    Google Scholar 

  • Zeng, Z. et al. Legacy effects of spring phenology on vegetation growth under preseason meteorological drought in the Northern Hemisphere. Agric. Meteorol. 310, 108630 (2021).

    Article 

    Google Scholar 

  • Kelsey, K. C. et al. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob. Change Biol. 27, 1572–1586 (2021).

    Article 

    Google Scholar 

  • Wang, X. et al. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob. Change Biol. 24, 1651–1662 (2018).

    Article 

    Google Scholar 

  • IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    Article 

    Google Scholar 

  • Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. USA 117, 9216–9222 (2020).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. Y. et al. Global long-term passive microwave satellite-based retrievals of vegetation optical depth. Geophys. Res. Lett. 38, L18402 (2011).

    Article 

    Google Scholar 

  • Beguería, S. et al. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).

    Article 

    Google Scholar 

  • Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).

    Article 
    CAS 

    Google Scholar 

  • D’Andrea, E. et al. Unravelling resilience mechanisms in forests: role of non-structural carbohydrates in responding to extreme weather events. Tree Physiol. 41, 1808–1818 (2021).

    Article 

    Google Scholar 

  • Yun, J. et al. Influence of winter precipitation on spring phenology in boreal forests. Glob. Change Biol. 24, 5176–5187 (2018).

    Article 

    Google Scholar 

  • Xie, J. et al. Spring temperature and snow cover climatology drive the advanced springtime phenology (1991–2014) in the European Alps. J. Geophys. Res. Biogeosci. 126, e2020JG006150 (2021).

  • Xie, J. et al. Altitude-dependent influence of snow cover on alpine land surface phenology. J. Geophys. Res. Biogeosci. 122, 1107–1122 (2017).

    Article 

    Google Scholar 

  • Peng, S. et al. Change in winter snow depth and its impacts on vegetation in China. Glob. Change Biol. 16, 3004–3013 (2010).

    Google Scholar 

  • Wu, X. et al. Uneven winter snow influence on tree growth across temperate China. Glob. Change Biol. 25, 144–154 (2019).

    Article 

    Google Scholar 

  • Angert, A. et al. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc. Natl Acad. Sci. USA 102, 10823–10827 (2005).

    Article 
    CAS 

    Google Scholar 

  • Musselman, K. N. et al. Winter melt trends portend widespread declines in snow water resources. Nat. Clim. Change 11, 418–424 (2021).

    Article 

    Google Scholar 

  • Kreyling, J. Winter climate change: a critical factor for temperate vegetation performance. Ecology 91, 1939–1948 (2010).

    Article 

    Google Scholar 

  • Bose, A. K. et al. Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Glob. Change Biol. 26, 4521–4537 (2020).

    Article 

    Google Scholar 

  • Martinez-Vilalta, J. et al. Hydraulic adjustment of Scots pine across Europe. New Phytol. 184, 353–364 (2009).

    Article 
    CAS 

    Google Scholar 

  • Klein, T. et al. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree Physiol. 34, 981–992 (2014).

    Article 
    CAS 

    Google Scholar 

  • Kannenberg, S. A. & Phillips, R. P. Non-structural carbohydrate pools not linked to hydraulic strategies or carbon supply in tree saplings during severe drought and subsequent recovery. Tree Physiol. 40, 259–271 (2020).

    Article 
    CAS 

    Google Scholar 

  • Karst, J. et al. Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiol. 37, 154–164 (2017).

    CAS 

    Google Scholar 

  • Chitra-Tarak, R. et al. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. New Phytol. 231, 1798–1813 (2021).

    Article 

    Google Scholar 

  • Jiao, W. et al. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, 3777 (2021).

  • Wu, X. et al. Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere. Geophys. Res. Lett. 44, 6173–6181 (2017).

    Article 

    Google Scholar 

  • Anderegg, W. R. L. et al. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).

    Article 

    Google Scholar 

  • Martin-Benito, D. & Pederson, N. Convergence in drought stress, but a divergence of climatic drivers across a latitudinal gradient in a temperate broadleaf forest. J. Biogeogr. 42, 925–937 (2015).

    Article 

    Google Scholar 

  • Tucker, C. J. et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).

    Article 

    Google Scholar 

  • Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).

    Article 
    CAS 

    Google Scholar 

  • Zhang, W. et al. Divergent response of vegetation growth to soil water availability in dry and wet periods over Central Asia. J. Geophys. Res. Biogeosci. 126, e2020JG005912 (2021).

    Article 

    Google Scholar 

  • Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).

    Article 

    Google Scholar 

  • Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article 

    Google Scholar 

  • Liang, W. et al. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric. For. Meteorol. 204, 22–36 (2015).

    Article 

    Google Scholar 

  • Zhang, Y. et al. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).

    Article 
    CAS 

    Google Scholar 

  • Jones, M. O. et al. Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sens. Environ. 115, 1102–1114 (2011).

    Article 

    Google Scholar 

  • Konings, A. G. et al. Interannual variations of vegetation optical depth are due to both water stress and biomass changes. Geophys. Res. Lett. 48, e2021GL095267 (2021).

    Article 

    Google Scholar 

  • Du, J. et al. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations. Earth Syst. Sci. Data 9, 791–808 (2017).

    Article 

    Google Scholar 

  • Harris, I. et al. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article 

    Google Scholar 

  • Barichivich, J. et al. Temperature and snow-mediated moisture controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011. Remote Sens. 6, 1390–1431 (2014).

    Article 

    Google Scholar 

  • Vicente-Serrano, S. M., Begueria, S. & Lopez-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    Article 

    Google Scholar 

  • Wieder, W. R. et al. Regridded Harmonized World Soil Database v1.2 (ORNL DAAC, 2014); https://doi.org/10.3334/ORNLDAAC/1247

  • Kottek, M. et al. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).

    Article 

    Google Scholar 

  • Jakubauskas, M. E., Legates, D. R. & Kastens, J. H. Harmonic analysis of time-series AVHRR NDVI data. Photogramm. Eng. Remote Sens. 67, 461–470 (2001).

    Google Scholar 

  • Liu, Q. et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Change Biol. 22, 644–655 (2016).

    Article 
    CAS 

    Google Scholar 

  • Fu, Y. H. et al. Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob. Ecol. Biogeogr. 23, 1255–1263 (2014).

    Article 

    Google Scholar 

  • Jiang, P. et al. Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nat. Commun. 10, 195 (2019).

  • Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

  • Pham, L. T. H. & Brabyn, L. Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms. ISPRS J. Photogramm. Remote Sens. 128, 86–97 (2017).

    Article 

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar 

  • Li, Y. Code for ‘Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems’. GitHub https://github.com/leeyang1991/phenology-effects-on-drought-recovery (2022).


  • Source: Ecology - nature.com

    Preparing to be prepared

    Synapsid tracks with skin impressions illuminate the terrestrial tetrapod diversity in the earliest Permian of equatorial Pangea