in

Effect of earthworms on mycorrhization, root morphology and biomass of silver fir seedlings inoculated with black summer truffle (Tuber aestivum Vittad.)

  • 1.

    Castellano, M. A., Trappe, J. M. & Luoma, D. L. Sequestrate fungi. in Biodiversity of Fungi (ed. Mueller, G.M., Bills, G.F., Foster, M.S.) 197–213 (Elsevier, 2004). https://doi.org/10.1016/B978-012509551-8/50013-1.

  • 2.

    Benucci, G. M. N., Bonito, G., Falini, L. B. & Bencivenga, M. Mycorrhization of Pecan trees (Carya illinoinensis) with commercial truffle species: Tuber aestivum Vittad. and Tuber borchii Vittad. Mycorrhiza 22, 383–392 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Bonito, G. M., Gryganskyi, A. P., Trappe, J. M. & Vilgalys, R. A global meta-analysis of Tuber ITS rDNA sequences: Species diversity, host associations and long-distance dispersal. Mol. Ecol. 19, 4994–5008 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Kirk, P. M., Cannon, P. F., Stalpers, J. & Minter, D. W. Dictionary of the Fungi 10th ed. 1–784 (CABI, 2008).

  • 5.

    Splivallo, R., Novero, M., Bertea, C. M., Bossi, S. & Bonfante, P. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. https://doi.org/10.1111/j.1469-8137.2007.02141.x (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Benucci, G. M. N., Bonito, G., Falini, L. B., Bencivenga, M. & Donnini, D. Truffles, timber, food, and fuel: Sustainable approaches for multi-cropping truffles and economically important plants. In Edible Ectomycorrhizal Mushrooms. Soil Biology Vol. 34 (eds Zambonelli, A. & Bonito, G.) 265–280 (Springer, 2012). https://doi.org/10.1007/978-3-642-33823-6_15.

    Google Scholar 

  • 7.

    Strojnik, L., Grebenc, T. & Ogrinc, N. Species and geographic variability in truffle aromas. Food Chem. Toxicol. https://doi.org/10.1016/j.fct.2020.111434 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Bonet, J. A. et al. Cultivation methods of the Black Truffle, the most profitable Mediterranean non-wood forest product; a state of the artreview. EFI Proc. 57, 57–71 (2009).

    Google Scholar 

  • 9.

    Rinaldi, A. C., Comandini, O. & Kuyper, T. W. Ectomycorrhizal fungal diversity: Separating the wheat from the chaff. Fungal Divers. 33, 1–45 (2008).

    Google Scholar 

  • 10.

    Ori, F. et al. Synthesis and ultrastructural observation of arbutoid mycorrhizae of black truffles (Tuber melanosporum and T. aestivum). Mycorrhiza 30(6), 715–723 (2020). https://doi.org/10.1007/s00572-020-00985-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Schneider-Maunoury, L. et al. Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum, endophytically colonise roots of non-ectomycorrhizal plants in natural environments. New Phytol. 225, 2542–2556 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Mello, A., Murat, C., Vizzini, A., Gavazza, V. & Bonfante, P. Tuber magnatum Pico, a species of limited geographical distribution: Its genetic diversity inside and outside a truffle ground. Environ. Microbiol. 7, 55–65 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Hall, I., Brown, G. T. & Zambonelli, A. Taming the Truffle (The History, Lore, and Science of the Ultimate Mushroom) (Timber Press, 2007).

    Google Scholar 

  • 14.

    Shamekh, S., Grebenc, T., Leisola, M. & Turunen, O. The cultivation of oak seedlings inoculated with Tuber aestivum Vittad. in the boreal region of Finland. Mycol. Prog. 13, 373–380 (2014).

    Article 

    Google Scholar 

  • 15.

    Kinoshita, A., Obase, K. & Yamanaka, T. Ectomycorrhizae formed by three Japanese truffle species (Tuber japonicum, T. longispinosum, and T. himalayense) on indigenous oak and pine species. Mycorrhiza 28, 679–690 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Sulzbacher, M. A. et al. Fungos ectomicorrízicos em plantações de nogueira-pecã e o potencial da truficultura no Brasil. Ciência Florest. 29, 975 (2019).

    Article 

    Google Scholar 

  • 17.

    Grupe, A. C. et al. Tuber brennemanii and Tuber floridanum: Two new Tuber species are among the most commonly detected ectomycorrhizal taxa within commercial pecan (Carya illinoinensis) orchards. Mycologia 110, 780–790 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Chevalier, G. & Frochot, H. La Truffe de Bourgogne (Tuber unicatum Chatin) (Editions Petrarque, 2002). https://doi.org/10.4267/2042/5669.

    Google Scholar 

  • 19.

    Donnini, D., Benucci, G. M. N., Bencivenga, M. & Baciarelli-Falini, L. Quality assessment of truffle-inoculated seedlings in Italy: proposing revised parameters for certification. For. Syst. 23, 385 (2014).

    Google Scholar 

  • 20.

    Reyna, S. & Garcia-Barreda, S. Black truffle cultivation: A global reality. For. Syst. 23, 317 (2014).

    Google Scholar 

  • 21.

    Wedén, C., Pettersson, L. & Danell, E. Truffle cultivation in Sweden: Results from Quercus robur and Corylus avellana field trials on the island of Gotland. Scand. J. For. Res. 24, 37–53 (2009).

    Article 

    Google Scholar 

  • 22.

    Iotti, M. et al. Development and validation of a real-time PCR assay for detection and quantification of Tuber magnatum in soil. BMC Microbiol. 12, 93 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Freiberg, J.A., Sulzbacher, M.A., Santana, N.A., Fronza, D., Giachini, A., Grebenc, T., Jacques, R., A. Z. Mycorrhization of pecans with European truffles (Tuber spp., Tuberaceae) under southern subtropical conditions. Appl. Soil Ecol. (2021).

  • 24.

    Paolocci, F., Rubini, A., Riccioni, C. & Arcioni, S. Reevaluation of the life cycle of Tuber magnatum. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.72.4.2390-2393.2006 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Healy, R. A. et al. High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales. Mol. Ecol. 22(6), 1717–1732. https://doi.org/10.1111/mec.12135 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Pattinson, G. S., Smith, S. E. & Doube, B. M. Earthworm Aporrectodea trapezoides had no effect on the dispersal of a vesicular-arbuscular mycorrhizal fungi, Glomus intraradices. Soil Biol. Biochem. 29, 1079–1088 (1997).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Gange, A. C. Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol. Biochem. 25, 1021–1026 (1993).

    Article 

    Google Scholar 

  • 28.

    Milleret, R., Le Bayon, R. C. & Gobat, J. M. Root, mycorrhiza and earthworm interactions: Their effects on soil structuring processes, plant and soil nutrient concentration and plant biomass. Plant Soil https://doi.org/10.1007/s11104-008-9753-7 (2009).

    Article 

    Google Scholar 

  • 29.

    Gormsen, D., Olsson, P. A. & Hedlund, K. The influence of collembolans and earthworms on AM fungal mycelium. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2004.06.001 (2004).

    Article 

    Google Scholar 

  • 30.

    Wurst, S., Dugassa-Gobena, D., Langel, R., Bonkowski, M. & Scheu, S. Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance. New Phytol. https://doi.org/10.1111/j.1469-8137.2004.01106.x (2004).

    Article 

    Google Scholar 

  • 31.

    Eisenhauer, N. et al. Impacts of earthworms and arbuscular mycorrhizal fungi (Glomus intraradices) on plant performance are not interrelated. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2008.12.017 (2009).

    Article 

    Google Scholar 

  • 32.

    Stobbe, U. et al. Potential and limitations of Burgundy truffle cultivation. Appl. Microbiol. Biotechnol. 97, 5215–5224 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Jeandroz, S., Murat, C., Wang, Y., Bonfante, P. & Le Tacon, F. Molecular phylogeny and historical biogeography of the genus Tuber, the ‘true truffles’. J. Biogeogr. 35, 815–829 (2008).

    Article 

    Google Scholar 

  • 34.

    Gardin, L. I tartufi minori in Toscana. Gli ambienti di crescita dei tartufi marzuolo e scorze (ARSIA, 2005).

    Google Scholar 

  • 35.

    Pampanini, R., Marchini, A. & Diotallevi, F. Il mercato del tartufo fresco in Italia tra performance commerciali e vincoli allo sviluppo: il contributo delle regioni italiane. Econ. Agro-Alimentare 18, 11–28 (2012).

    Google Scholar 

  • 36.

    Wolf, H. EUFORGEN technical guidelines for genetic conservation and use for silver fir (Abies alba). Int. Plant Genet. Resour. Inst. Rome Italy https://doi.org/10.1016/j.jaci.2010.08.025 (2003).

    Article 

    Google Scholar 

  • 37.

    Comandini, O., Pacioni, G. & Rinaldi, A. C. Fungi in ectomycorrhizal associations of silver fir (Abies alba Miller) in Central Italy. Mycorrhiza 7, 323–328 (1998).

    Article 

    Google Scholar 

  • 38.

    Ważny, R. Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in Scots pine forecrops. Ann. For. Sci. 71, 801–810 (2014).

    Article 

    Google Scholar 

  • 39.

    Ważny, R. & Kowalski, S. Ectomycorrhizal fungal communities of silver-fir seedlings regenerating in fir stands and larch forecrops. Trees Struct. Funct. 31, 929–939 (2017).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Rudawska, M., Pietras, M., Smutek, I., Strzeliński, P. & Leski, T. Ectomycorrhizal fungal assemblages of Abies alba Mill. outside its native range in Poland. Mycorrhiza 26, 57–65 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Iotti, M., Piattoni, F. & Zambonelli, A. Techniques for host plant inoculation with truffles and other edible ectomycorrhizal mushrooms. in Edible Ectomycorrhizal Mushrooms (eds. Zambonelli, A., Bonito, G.M.) 145–161 (Springer, 2012). https://doi.org/10.1007/978-3-642-33823-6_9

  • 42.

    Finér, L. et al. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 141, 394–405 (2007).

    Google Scholar 

  • 43.

    Železnik, P. et al. CASIROZ: Root parameters and types of ectomycorrhiza of young beech plants exposed to different ozone and light regimes. Plant Biol. 9, 298–308 (2007).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 44.

    Agerer, R. Colour Atlas of Ectomycorrhizae (Einhorn-Verlag, 1987).

    Google Scholar 

  • 45.

    Agerer, R. Characterization of ectomycorrhiza. Methods Microbiol. https://doi.org/10.1016/S0580-9517(08)70172-7 (1991).

    Article 

    Google Scholar 

  • 46.

    Agerer, R. & Rambold, G. 2004–2018 [first posted on 2004–06–01; most recent update: 2011-01-10]. DEEMY—An Information System for Characterization and Determination of Ectomycorrhizae. München, Germany (2004).

  • 47.

    Fischer, C. & Colinas, C. Methology for certification of Quercus ilex seedlings inoculated with Tuber melanosporum for commercial application. in First International Conference on Mycorrhiza (1996).

  • 48.

    Reyna, S., Boronat, J. & Palomar, E. Quality control of plants mycorrhized with Tuber melanosporum Vitt. edible mycorrhizal mushrooms and their cultivation. Proc. Second Int. Conf. Edible Mycorrhizal Mushrooms, Crop Food Res. Christchurch 1–9 (eds. Wang Y., Danell, E., Zambonelli, A.) CD-ROM (New Zealand Institute for Crop & Food Research Limited, Christchurch, 2002).

  • 49.

    White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. in PCR Protocols: A Guide to Methods and Applications (eds. Innis, M.A., Gelfond, D.H., Sninsky, J.J., White, T.J.) 315–322 (Academic Press, Inc., 1990). https://doi.org/10.1016/B978-0-12-372180-8.50042-1.

  • 50.

    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Bertini, L. A new pair of primers designed for amplification of the ITS region in Tuber species. FEMS Microbiol. Lett. 173, 239–245 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Grebenc, T. & Kraigher, H. Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone concentration. Plant Biol. 9, 279–287 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Team, R. C. R: A language and environment for statistical computing. (2016).

  • 55.

    KothariI, S. K., Marschner, H. & George, E. Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol. https://doi.org/10.1111/j.1469-8137.1990.tb04718.x (1990).

    Article 

    Google Scholar 

  • 56.

    Ludwig-Müller, J. Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. Arbuscular Mycorrhizas Physiol. Funct. https://doi.org/10.1007/978-90-481-9489-6_8 (2010).

    Article 

    Google Scholar 

  • 57.

    Hanlon, M. T. & Coenen, C. Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytol. 189, 701–709 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Sukumar, P. et al. Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant. Cell Environ. 36, 909–919 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Maherali, H. Is there an association between root architecture and mycorrhizal growth response?. New Phytol. https://doi.org/10.1111/nph.12927 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl. Acad. Sci. 113, 8741–8746 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Syers, J. K. & Springett, J. A. Earthworms and soil fertility. Plant Soil 76, 93–104 (1984).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Mamoun, M. & Oliver, J. M. Mycorrhizal inoculation of cloned hazels by Tuber melanosporum: Effect of soil disinfestation and co-culture with Festuca ovina. Plant Soil 188, 221–262 (1997).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Santelices, R. & Palfner, G. Controlled rhizogenesis and mycorrhization of hazelnut (Corylus avellana L.) cuttings with Black truffle (Tuber melanosporum Vitt.). Chil. J. Agric. Res. 70, 204–212 (2010).

    Article 

    Google Scholar 

  • 64.

    Martin, F. M. & Hilbert, J. L. Morphological, biochemical and molecular changes during ectomycorrhiza development. Experientia 47, 321–331 (1991).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Zaller, J. G. et al. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities. PLoS ONE 6, e29293 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Robakowski, P., Wyka, T., Samardakiewicz, S. & Kierzkowski, D. Growth, photosynthesis, and needle structure of silver fir (Abies alba Mill.) seedlings under different canopies. For. Ecol. Manage. 201, 211–227 (2004).

    Article 

    Google Scholar 

  • 67.

    Mrak, T. & Gričar, J. Atlas of Woody Plant Roots: Morphology and Anatomy with Special Emphasis on Fine Roots (Slovenian Forestry Institute, The Silva Slovenica Publishing Centre, 2016). https://doi.org/10.20315/SFS.147.

    Google Scholar 

  • 68.

    Montecchi, A. & Sarasini, M. Funghi ipogei d’Europa. Vicenza: Fondazione Centro Studi (Micologica dell” A.M.B., 2000).

    Google Scholar 

  • 69.

    Benucci, G. M. N. et al. Ectomycorrhizal communities in a productive Tuber aestivum Vittad. orchard: Composition, host influence and species replacement. FEMS Microbiol. Ecol. 76, 170–184 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Marjanović, Ž, Grebenc, T., Marković, M., Glišić, A. & Milenković, M. Ecological specificities and molecular diversity of truffles (genus Tuber) originating from mid-west of the Balkan Peninsula. Sydowia 1, 273–291 (2010).

    Google Scholar 

  • 71.

    Grebenc, T., Bajc, M. & Kraigher, H. Post-glacial migrations of mycorrhizal plants and ectomycorrhizal partners: An example of the genus Tuber. Les 62, 149–154 (2010).

    Google Scholar 

  • 72.

    Chavdarova, S., Kajevska, I. K. R., Grebenc, T. & Karadelev, M. Distribution and ecology of hypogenous fungi (excluding Tuber) in the Republic of Macedonia. Biol. Maced. 62, 37–48 (2011).

    Google Scholar 

  • 73.

    Milenković, M., Grebenc, T., Marković, M. & Ivančević, B. Tuber petrophilum, a new truffle species from Serbia. Mycotaxon 130, 1141–1152 (2016).

    Article 

    Google Scholar 

  • 74.

    Brown, G. G., Edwards, C. A. & Brussaard, L. How earthworms affect plant growth: Burrowing into the mechanisms. in Earthworm Ecology (ed. Edwards, C.A.) 13–49 (Boca Raton : CRC Press, 2004). https://doi.org/10.1201/9781420039719.

  • 75.

    Pattinson, G. S. Trapezoides had no effect on the dispersal of a Vesicular-Arbuscular Mycorrhizal fungi. Can. J. Bot. 29, 1079–1088 (1997).

    CAS 

    Google Scholar 

  • 76.

    Lawrence, B., Fisk, M. C., Fahey, T. J. & Suarez, E. R. Influence of nonnative earthworms on mycorrhizal colonization of sugar maple (Acer saccharum). New Phytol. 157, 145–153 (2003).

    Article 

    Google Scholar 

  • 77.

    Ortiz-Ceballos, A. I., Peña-Cabriales, J. J., Fragoso, C. & Brown, G. G. Mycorrhizal colonization and nitrogen uptake by maize: Combined effect of tropical earthworms and velvetbean mulch. Biol. Fertil. Soils 44, 181–186 (2007).

    Article 

    Google Scholar 

  • 78.

    Reddell, P. & Spain, A. V. Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol. Biochem. 23, 767–774 (1991).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    How to prevent short-circuiting in next-gen lithium batteries

    How coal’s decline impacts county and school funding