Berthrong, S. T. et al. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Appl. Environ. Microb. 80, 3103–3112. https://doi.org/10.1128/AEM.04034-13 (2014).
Google Scholar
Millar, N., Robertson, G. P., Grace, P. R., Gehl, R. J. & Hoben, J. P. Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production: An emissions reduction protocol for US Midwest agriculture. Mitig. Adapt. Strat. Gl. 15, 185–204. https://doi.org/10.1007/s11027-010-9212-7 (2010).
Google Scholar
Zhou, J. et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol. Biochem. 90, 42–51. https://doi.org/10.1016/j.soilbio.2015.07.005 (2015).
Google Scholar
Ding, J. et al. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl. Soil Ecol. 111, 114–122. https://doi.org/10.1016/j.apsoil.2016.12.003 (2017).
Google Scholar
Zhou, J. et al. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biol. Biochem. 95, 135–143. https://doi.org/10.1016/j.soilbio.2015.12.012 (2016).
Google Scholar
Liu, J. et al. Diversity and distribution patterns of acidobacterial communities in the black soil zone of northeast China. Soil Biol. Biochem. 95, 212–222. https://doi.org/10.1016/j.soilbio.2015.12.021 (2016).
Google Scholar
Pan, H. et al. Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil Till. Res. 198, 104540. https://doi.org/10.1016/j.still.2019.104540 (2020).
Google Scholar
Ma, M. et al. Chronic fertilization of 37 years alters the phylogenetic structure of soil arbuscular mycorrhizal fungi in Chinese Mollisols. AMB Express 8, 57. https://doi.org/10.1186/s13568-018-0587-2 (2018).
Google Scholar
Hu, X. et al. Long-term manure addition reduces diversity and changes community structure of diazotrophs in a neutral black soil of northeast China. J. Soils Sediments 18, 2053–2062. https://doi.org/10.1007/s11368-018-1975-6 (2018).
Google Scholar
Liu, J. et al. Ammonia-oxidizing archaea show more distinct biogeographic distribution patterns than ammonia-oxidizing bacteria across the black soil zone of northeast China. Front. Microbial. 9, 171. https://doi.org/10.3389/fmicb.2019.00023 (2018).
Google Scholar
Fan, K., Delgado-Baquerizo, M., Guo, X., Wang, D. & Chu, H. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7, 143. https://doi.org/10.1186/s40168-019-0757-8 (2019).
Google Scholar
Kumar, U. et al. Long-term aromatic rice cultivation effect on frequency and diversity of diazotrophs in its rhizosphere. Ecol. Eng. 101, 227–236. https://doi.org/10.1016/j.ecoleng.2017.02.010 (2017).
Google Scholar
Gaby, J. C., Rishishwar, L., Valderrama-Aguirre, L. C., Green, S. J. & Kostka, J. E. Diazotroph community characterization via a high-throughput nifH amplicon sequencing and analysis pipeline. Appl. Environ. Microbiol. 84, 01512–01517. https://doi.org/10.1128/AEM.01512-17 (2018).
Google Scholar
Wang, J. et al. Temporal variation of diazotrophic community abundance and structure in surface and subsoil under four fertilization regimes during a wheat growing season. Agric. Ecosyst. Environ. 216, 116–124. https://doi.org/10.1016/j.agee.2015.09.039 (2016).
Google Scholar
Van Kessel, C. & Hartley, C. Agricultural management of grain legumes: Has it led to an increase in nitrogen fixation?. Field Crops Res. 65, 165–181. https://doi.org/10.1016/S0378-4290(99)00085-4 (2000).
Google Scholar
Wang, C. et al. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biol. Biochem. 113, 240–249. https://doi.org/10.1016/j.soilbio.2017.06.019 (2017).
Google Scholar
Feng, M. et al. Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biol. Biochem. 126, 151–158. https://doi.org/10.1016/j.soilbio.2018.08.021 (2018).
Google Scholar
Fan, L. Response of diazotrophic microbial community to nitrogen input and glyphosate application in soils cropped to soybean. (2013).
Cheng, F. et al. Isolation and application of effective nitrogen fixation rhizobial strains on low-phosphorus acid soils in South China. Chin. Sci. Bull. 54, 412–420. https://doi.org/10.1007/s11434-008-0521-0 (2009).
Google Scholar
Qiao, Y. et al. The effect of fertilizer practices on N balance and global warming potential of maize–soybean–wheat rotations in Northeastern China. Field Crops Res. 161, 98–106. https://doi.org/10.1016/j.fcr.2014.03.005 (2014).
Google Scholar
Hsu, S. F. & Buckley, D. H. Evidence for the functional significance of diazotroph community structure in soil. ISME J. 3, 124–136. https://doi.org/10.1038/ismej.2008.82 (2009).
Google Scholar
Chen, J., Shen, W., Xu, H., Li, Y. & Luo, T. The composition of nitrogen-fixing microorganisms correlates with soil nitrogen content during reforestation: A comparison between legume and non-legume plantations. Front. Microbiol. 10, 508. https://doi.org/10.3389/fmicb.2019.00508 (2019).
Google Scholar
Saleem, M., Law, A. D., Sahib, M. R., Pervaiz, Z. H. & Zhang, Q. Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere 6, 47–51. https://doi.org/10.1016/j.rhisph.2018.02.003 (2018).
Google Scholar
Zhang, X. et al. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS ONE 8, e76500. https://doi.org/10.1371/journal.pone.0076500 (2013).
Google Scholar
Coelho, M. et al. Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer. Appl. Soil Ecol. 42, 48–53. https://doi.org/10.1016/j.apsoil.2009.01.010 (2009).
Google Scholar
Wakelin, S. A. et al. The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. Fems Microbiol. Ecol. 59, 661–670. https://doi.org/10.1111/j.1574-6941.2006.00235.x (2006).
Google Scholar
Shirani, H., Hajabbasi, M. A., Afyuni, M. & Hemmat, A. Effects of farmyard manure and tillage systems on soil physical properties and corn yield in central Iran. Soil Till. Res. 68, 101–108. https://doi.org/10.1016/S0167-1987(02)00110-1 (2002).
Google Scholar
Sheffer, E., Batterman, S. A., Levin, S. A. & Hedin, L. O. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nat. Plants 1, 15182. https://doi.org/10.1038/nplants.2015.182 (2015).
Google Scholar
Guo, J. H. et al. Significant acidification in major Chinese croplands. Science 327, 1008–1010. https://doi.org/10.1126/science.1182570 (2010).
Google Scholar
Ding, J. et al. Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China. Appl. Soil Ecol. 105, 187–195. https://doi.org/10.1016/j.apsoil.2016.04.010 (2016).
Google Scholar
Soman, C., Keymer, D. P. & Kent, A. D. Edaphic correlates of feedstock-associated diazotroph communities. GCB Bioenergy 10, 343–352. https://doi.org/10.1111/gcbb.12502 (2018).
Google Scholar
He, D. et al. Evolvement of structure and abundance of soil nitrogen-fixing bacterial community in Phyllostachys edulis plantations with age of time. Acta Pedol. Sin. 52, 934–942. https://doi.org/10.11766/trxb201408070397 (2015).
Google Scholar
Ning, Q. et al. Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of northern China. J. Soils Sediments 15, 694–704. https://doi.org/10.1007/s11368-015-1061-2 (2015).
Google Scholar
Huang, J. et al. Responses of soil nitrogen fixation to Spartina alterniflora invasion and nitrogen addition in a Chinese salt marsh. Sci. Rep. 6, 20384. https://doi.org/10.1038/srep20384 (2016).
Google Scholar
Zhu, C. et al. N-fertilizer-driven association between the arbuscular mycorrhizal fungal community and diazotrophic community impacts wheat yield. Agric. Ecosyst. Environ. 254, 191–201. https://doi.org/10.1016/j.agee.2017.11.029 (2018).
Google Scholar
Coelho, M. et al. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. FEMS Microbiol. Lett. 111, 114–122. https://doi.org/10.1111/j.1574-6968.2007.00975.x (2007).
Google Scholar
Velagaleti, R. R. & Marsh, S. Influence of host cultivars and Bradyrhizobium strains on the growth and symbiotic performance of soybean under salt stress. Plant Soil 119, 133–138. https://doi.org/10.1007/BF02370277 (1989).
Google Scholar
Appunu, C. & Dhar, B. Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with soybean in low pH soil. Afr. J. Biotechnol. https://doi.org/10.5897/AJB06.131 (2006).
Google Scholar
Kunert, K. J. et al. Drought stress responses in soybean roots and nodules. Front. Plant Sci. 7, 1015. https://doi.org/10.3389/fpls.2016.01015 (2016).
Google Scholar
Ahemad, M. & Khan, M. S. Insecticide-tolerant and plant growth promoting Bradyrhizobium sp. (vigna) improves the growth and yield of greengram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils. Symbiosis 54, 17–27. https://doi.org/10.1007/s13199-011-0122-6 (2011).
Google Scholar
Chen, J., Zhou, Z. & Gu, J. Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoAgenes. Appl. Microbiol. Biotechnol. 98, 5685–5696. https://doi.org/10.1007/s00253-014-5733-4 (2014).
Google Scholar
Santoscaton, I. R., Caton, T. M. & Schneegurt, M. A. Nitrogen-fixation activity and the abundance and taxonomy of nifH genes in agricultural, pristine, and urban prairie stream sediments chronically exposed to different levels of nitrogen loading. Arch. Microbiol. https://doi.org/10.1007/s00203-018-1475-5 (2018).
Google Scholar
Zhou, J. et al. Effects of long term application of urea on ammonia oxidizing archaea community in black soil in Northeast China. Sci. Agric. Sin. 49, 294–304. https://doi.org/10.3864/j.issn.0578-1752.2016.02.010 (2016).
Google Scholar
Zhou, J. et al. Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China. Sci. Rep. 7, 3267. https://doi.org/10.1038/s41598-017-03539-6 (2017).
Google Scholar
Diedrick, K. A. Field Investigations of Nitrogen Fertility on Corn and Soybeans and Foliar Manganese-Glyphosate Interactions on Glyphosate-Tolerant Soybeans in Ohio (The Ohio State University, 2010).
Salamone, I., Bereiner, J., Urquiaga, S. & Boddey, R. Biological nitrogen fixation in Azospirillumstrain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol. Fertil. Soils 23, 249–256. https://doi.org/10.1007/BF00335952 (1996).
Google Scholar
Carelli, M. et al. Genetic diversity and dynamics of sinorhizobium meliloti populations nodulating different alfalfa cultivars in Italiansoils. Appl. Environ. Microbiol. 66, 4785–4789. https://doi.org/10.1128/AEM.66.11.4785-4789.2000 (2000).
Google Scholar
Coelho, M. R. et al. Diversity of Paenibacillus spp. in the rhizosphere of four sorghum (Sorghum bicolor) cultivars sown with two contrasting levels of nitrogen fertilizer assessed by rpoB-based PCR-DGGE and sequencing analysis. J. Microbiol. Biotechnol. 17, 753–760. https://doi.org/10.1007/s10295-007-0209-5 (2007).
Google Scholar
Cao, Y., Wang, E., Zhao, L., Chen, W. & Wei, G. Diversity and distribution of rhizobia nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biol. Biochem. 78, 128–137. https://doi.org/10.1016/j.soilbio.2014.07.026 (2014).
Google Scholar
Ahmed, I. H., Francina, L. B., Isabella, H. R. & Galaletsang, S. Nodulation efficacy of Bradyrhizobium japonicum inoculant strain WB74 on soybean (Glycine max L. Merrill) is affected by several limiting factors. Afr. J. Microbiol. Res. 8, 2069–2076. https://doi.org/10.5897/ajmr2014.6709 (2014).
Google Scholar
Yan, J. et al. Effects of long-term fertilization strategies on soil productivity and rhizobial diversity in Chinese mollisol. Pedosphere 29, 784–793. https://doi.org/10.1016/S1002-0160(17)60470-3 (2019).
Google Scholar
Riffkin, P. A., Quigley, P. E., Kearney, G. A., Cameron, F. J. & Thies, J. E. Factors associated with biological nitrogen fixation in dairy pastures in south-western Victoria. Aust. J. Agric. Res. 50, 261–272. https://doi.org/10.1071/a98035 (1999).
Google Scholar
Yang, L. et al. Diazotroph abundance and community structure are reshaped by straw return and mineral fertilizer in rice-rice-green manure rotation. Appl. Soil Ecol. 136, 11–20. https://doi.org/10.1016/j.apsoil.2018.12.015 (2019).
Google Scholar
Zou, Y. et al. Effects of different land use patterns on nifH genetic diversity of soil nitrogen-fixing microbial communities in Leymus Chinensis steppe. Acta Ecol. Sin. 31, 150–156 (2011).
Google Scholar
Zahran, H. H. Rhizobium-Legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. R 63, 968–989. https://doi.org/10.1016/j.chnaes.2011.03.004 (1999).
Google Scholar
Tang, Y. et al. Impact of fertilization regimes on diazotroph community compositions and N2-fixation activity in paddy soil. Agriculture, Ecosystems & Environment: An International Journal for Scientific Research on the Relationship of Agriculture and Food Production to the Biosphere (2017).
Gao, P., Li, Y., Tan, L., Guo, F. & Ma, T. Composition of bacterial and archaeal communities in an alkali-surfactant-polyacrylamide-flooded oil reservoir and the responses of microcosms to nutrients. Front. Microbiol. 10, 2197. https://doi.org/10.3389/fmicb.2019.02197 (2019).
Google Scholar
Rösch, C., Mergel, A. & Bothe, H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl. Enviro. Microbiol. 68, 3818–3829. https://doi.org/10.1128/AEM.68.8.3818-3829.2002 (2002).
Google Scholar
Wei, G. et al. Similar drivers but different effects lead to distinct ecological patterns of soil bacterial and archaeal communities. Soil Biol. Biochem. 144, 107759. https://doi.org/10.1016/j.soilbio.2020.107759 (2020).
Google Scholar
Sun, R., Guo, X., Wang, D. & Chu, H. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil Ecol. 95, 171–178. https://doi.org/10.1016/j.apsoil.2015.06.010 (2015).
Google Scholar
Asnicar, F., Weingart, G., Tickle, T. L., Huttenhower, C. & Segata, N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3, 1029. https://doi.org/10.7717/peerj.1029 (2015).
Google Scholar
Gao, P. et al. Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China. Sci. Rep. 6, 20174. https://doi.org/10.1038/srep20174 (2016).
Google Scholar
Source: Ecology - nature.com