in

Ecosystem response persists after a prolonged marine heatwave

  • 1.

    Overland, J., Rodionov, S., Minobe, S. & Bond, N. North Pacific regime shifts: definitions, issues and recent transitions. Prog. Oceanogr. 77, 92–102. https://doi.org/10.1016/j.pocean.2008.03.016 (2008).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Chavez, F. P., Ryan, J., Lluch-Cota, S. E. & Niquen, M. From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299, 217–221 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Beaugrand, G. et al. Synchronous marine pelagic regime shifts in the Northern Hemisphere. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130272. https://doi.org/10.1098/rstb.2013.0272 (2015).

    Article 

    Google Scholar 

  • 4.

    Anderson, P. J. & Piatt, J. F. Community reorganization in the Gulf of Alaska following ocean climate regime shift. Mar. Ecol. Prog. Ser. 189, 117–123 (1999).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Hare, S. R. & Mantua, N. J. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 47, 103–145. https://doi.org/10.1016/S0079-6611(00)00033-1 (2000).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Litzow, M. A. Climate regime shifts and community reorganization in the Gulf of Alaska: how do recent shifts compare with 1976/1977?. ICES J. Mar. Sci. 63, 1386–1396 (2006).

    Article 

    Google Scholar 

  • 7.

    Hatch, S. A. Kittiwake diets and chick production signal a 2008 regime shift in the Northeast Pacific. Mar. Ecol. Prog. Ser. 477, 271–284. https://doi.org/10.3354/meps10161 (2013).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteor. Soc. 78, 1069–1080 (1997).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Cane, M. A. & Zebiak, S. E. A theory for El-Nino and the Southern oscillation. Science 228, 1085–1087 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Di Lorenzo, E. et al. North Pacific Gyre oscillation links ocean climate and ecosystem change. Geophys. Res. Lett. 35, 6. https://doi.org/10.1029/2007GL032838 (2008).

    Article 

    Google Scholar 

  • 11.

    Bond, N. A., Overland, J. E., Spillane, M. & Stabeno, P. Recent shifts in the state of the North Pacific. Geophys. Res. Lett. 30, 1–3. https://doi.org/10.1029/2003GL018597 (2003).

    Article 

    Google Scholar 

  • 12.

    Litzow, M. A. et al. Non-stationary climate–salmon relationships in the Gulf of Alaska. Proc. R. Soc. B Biol. Sci. 285, 20181855. https://doi.org/10.1098/rspb.2018.1855 (2018).

    Article 

    Google Scholar 

  • 13.

    Litzow, M. A. et al. The changing physical and ecological meanings of North Pacific Ocean climate indices. Proc. Natl. Acad. Sci. 117, 7665–7671. https://doi.org/10.1073/pnas.1921266117 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Peterson, W. T. & Schwing, F. B. A new climate regime in northeast Pacific ecosystems. Geophys. Res. Lett. 30, 1896 (2003).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Litzow, M. A. & Mueter, F. J. Assessing the ecological importance of climate regime shifts: An approach from the North Pacific Ocean. Prog. Oceanogr. 120, 110–119. https://doi.org/10.1016/j.pocean.2013.08.003 (2014).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Puerta, P., Ciannelli, L., Rykaczewski, R., Opiekun, M. & Litzow, M. A. Do Gulf of Alaska fish and crustacean populations show synchronous non-stationary responses to climate?. Prog. Oceanogr. 175, 161–170. https://doi.org/10.1016/j.pocean.2019.04.002 (2019).

    ADS 
    Article 

    Google Scholar 

  • 17.

    IPCC. Summary for policymakers. In: IPCC special report on the ocean and cryosphere in a changing climate [H.- O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer (eds.)]. Accessed on 11/5/2019. Accessed on 11/5/2019. https://report.ipcc.ch/srocc/pdf/SROCC_FinalDraft_FullReport.pdf, 2019.

  • 18.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324. https://doi.org/10.1038/s41467-018-03732-9 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Hobday, A. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173. https://doi.org/10.5670/oceanog.2018.205 (2018).

    Article 

    Google Scholar 

  • 20.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1 (2019).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047. https://doi.org/10.1038/nclimate3082 (2016).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Jackson, J. M., Johnson, G. C., Dosser, H. V. & Ross, T. Warming from recent marine heatwave lingers in deep british columbia fjord. Geophys. Res. Lett. 45, 9757–9764. https://doi.org/10.1029/2018GL078971 (2018).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Cornwall, W. A new ‘Blob’ menaces Pacific ecosystems. Science 365, 1233–1233. https://doi.org/10.1126/science.365.6459.1233 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific ocean. Ecology 99, 2397–2399. https://doi.org/10.1002/ecy.2429 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 25.

    Batten, S. D. et al. Interannual variability in lower trophic levels on the Alaskan Shelf. Deep Sea Res. Part II 147, 58–68. https://doi.org/10.1016/j.dsr2.2017.04.023 (2018).

    Article 

    Google Scholar 

  • 26.

    Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 212. https://doi.org/10.3389/fmars.2019.00212 (2019).

    Article 

    Google Scholar 

  • 27.

    Harvell, C. D. et al. Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Sci. Adv. 5, eaau7042, doi:https://doi.org/10.1126/sciadv.aau7042 (2019).

  • 28.

    Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS ONE 15, e0226087. https://doi.org/10.1371/journal.pone.0226087 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Wade, N. M. et al. Effects of an unprecedented summer heatwave on the growth performance, flesh colour and plasma biochemistry of marine cage-farmed Atlantic salmon (Salmo salar). J. Therm. Biol 80, 64–74. https://doi.org/10.1016/j.jtherbio.2018.12.021 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Peterson, C. H. et al. Long-term ecosystem response to the exxon valdez oil spill. Science 302, 2082–2086 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Esler, D. et al. Timelines and mechanisms of wildlife population recovery following the Exxon Valdez oil spill. Deep Sea Res. Part II 147, 36–42. https://doi.org/10.1016/j.dsr2.2017.04.007 (2018).

    Article 

    Google Scholar 

  • 32.

    Danielson, S. L. et al. A study of marine temperature variations in the northern Gulf of Alaska across years of marine heatwaves and cold spells. Deep Sea Research Part II: Topical Studies in Oceanography (In prep).

  • 33.

    Arimitsu, M. L. et al. Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Glob. Change Biol., in press. https://doi.org/10.1111/gcb.15556 (2021).

  • 34.

    von Biela, V. R. et al. Extreme reduction in nutritional value of a key forage fish during the Pacific marine heatwave of 2014–2016. Mar. Ecol. Progress Ser. 613, 171–182 (2019).

  • 35.

    Sydeman, W. J. et al. Puffins reveal contrasting relationships between forage fish and ocean climate in the North Pacific. Fish. Oceanogr. 26, 379–395. https://doi.org/10.1111/fog.12204 (2017).

    Article 

    Google Scholar 

  • 36.

    Savage, K. 2018 Alaska Region marine mammal stranding summary. 14 (Protected Resources Division, National Marine Fisheries Service, Alaska Region, Juneau, Alaska 99802, 2019).

  • 37.

    Barbeaux, S. J., Holsman, K. & Zador, S. Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska pacific cod fishery. Front. Mar. Sci. 7, 703. https://doi.org/10.3389/fmars.2020.00703 (2020).

    Article 

    Google Scholar 

  • 38.

    Fisher, J. L., Peterson, W. T. & Rykaczewski, R. R. The impact of El Niño events on the pelagic food chain in the northern California Current. Glob. Change Biol. 21, 4401–4414. https://doi.org/10.1111/gcb.13054 (2015).

    ADS 
    Article 

    Google Scholar 

  • 39.

    McKinstry, C. A. E. & Campbell, R. W. Seasonal variation of zooplankton abundance and community structure in Prince William Sound, Alaska, 2009–2016. Deep Sea Res. Part II 147, 69–78. https://doi.org/10.1016/j.dsr2.2017.08.016 (2018).

    Article 

    Google Scholar 

  • 40.

    Santora, J. A. et al. Spatial ecology of krill, micronekton and top predators in the central California current: implications for defining ecologically important areas. Prog. Oceanogr. 106, 154–174 (2012).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Blake, R. E., Ward, C. L., Hunsicker, M. E., Shelton, A. O. & Hollowed, A. B. Spatial community structure of groundfish is conserved across the Gulf of Alaska. Mar. Ecol. Prog. Ser. 626, 145–160 (2019).

    ADS 
    Article 

    Google Scholar 

  • 42.

    McGowan, D. W., Horne, J. K. & Rogers, L. A. Effects of temperature on the distribution and density of capelin in the Gulf of Alaska. Mar. Ecol. Prog. Ser. 620, 119–138 (2019).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Watson, J. T. & Haynie, A. C. Paths to resilience: Alaska pollock fleet uses multiple fishing strategies to buffer against environmental change in the Bering Sea. Can. J. Fish. Aquat. Sci. 75, 1977–1989. https://doi.org/10.1139/cjfas-2017-0315 (2018).

    Article 

    Google Scholar 

  • 44.

    Beaudreau, A. H. et al. Thirty years of change and the future of Alaskan fisheries: Shifts in fishing participation and diversification in response to environmental, regulatory and economic pressures. Fish Fish. 20, 601–619. https://doi.org/10.1111/faf.12364 (2019).

    Article 

    Google Scholar 

  • 45.

    Barbeaux, S. et al. Assessment of the Pacific cod stock in the Gulf of Alaska. 160 (National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, Washington, USA, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, 2018).

  • 46.

    Laurel, B. J. & Rogers, L. A. Loss of spawning habitat and prerecruits of Pacific cod during a Gulf of Alaska heatwave. Can. J. Fish. Aquat. Sci. 77, 644–650. https://doi.org/10.1139/cjfas-2019-0238 (2020).

    Article 

    Google Scholar 

  • 47.

    Yang, Q. et al. How “The Blob” affected groundfish distributions in the Gulf of Alaska. Fish. Oceanogr. 28, 434–453. https://doi.org/10.1111/fog.12422 (2019).

    Article 

    Google Scholar 

  • 48.

    Fissel, B. et al. Stock assessment and fishery evaluation report for the groundfish fisheries of the Gulf Of Alaska and Bering Sea/Aleutian Islands area: Economic status of the groundfish fisheries off Alaska, 2017. 385 (National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, Washington, USA, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2019).

  • 49.

    Kasperski, S. & Holland, D. S. Income diversification and risk for fishermen. Proc. Natl. Acad. Sci. 110, 2076–2081. https://doi.org/10.1073/pnas.1212278110 (2013).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Scyphers, S. B., Picou, J. S. & Grabowski, J. H. Chronic social disruption following a systemic fishery failure. Proc. Natl. Acad. Sci. 116, 22912–22914. https://doi.org/10.1073/pnas.1913914116 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Curnock, M. I. et al. Shifts in tourists’ sentiments and climate risk perceptions following mass coral bleaching of the Great Barrier Reef. Nat. Clim. Change 9, 535–541. https://doi.org/10.1038/s41558-019-0504-y (2019).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Caputi, N. et al. Factors affecting the recovery of invertebrate stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci. 6, 484. https://doi.org/10.3389/fmars.2019.0048 (2019).

    Article 

    Google Scholar 

  • 53.

    Chandrapavan, A., Caputi, N. & Kangas, M. I. The decline and recovery of a crab population from an extreme marine heatwave and a changing climate. Front. Mar. Sci. 6, 510. https://doi.org/10.3389/fmars.2019.00510 (2019).

    Article 

    Google Scholar 

  • 54.

    Walsh, J. E. et al. The high latitude marine heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteor. Soc. 99, S39–S43. https://doi.org/10.1175/BAMS-D-17-0118.1 (2018).

    Article 

    Google Scholar 

  • 55.

    Sewall, F., Norcross, B., Vollenweider, J. & Heintz, R. Growth, energy storage, and feeding patterns reveal winter mortality risks for juvenile Pacific herring in Prince William Sound, Alaska, USA. Mar. Ecol. Prog. Ser. 623, 195–208 (2019).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Toresen, R., Skjoldal, H. R., Vikebø, F. & Martinussen, M. B. Sudden change in long-term ocean climate fluctuations corresponds with ecosystem alterations and reduced recruitment in Norwegian spring-spawning herring (Clupea harengus, Clupeidae). Fish Fish. 20, 686–696. https://doi.org/10.1111/faf.12369 (2019).

    Article 

    Google Scholar 

  • 57.

    Duffy-Anderson, J. T. et al. Responses of the northern bering sea and southeastern bering sea pelagic ecosystems following record-breaking low winter sea ice. Geophys. Res. Lett. 46, 9833–9842. https://doi.org/10.1029/2019gl083396 (2019).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411. https://doi.org/10.3389/fmars.2019.00411 (2019).

    Article 

    Google Scholar 

  • 59.

    Jacox, M., Tommasi, D., Alexander, M. A., Hervieux, G. & Stock, C. Predicting the evolution of the 2014–16 California Current System marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. 6, 497. https://doi.org/10.3389/fmars.2019.00497 (2019).

    Article 

    Google Scholar 

  • 60.

    Francis, R. C., Hare, S. R., Hollowed, A. B. & Wooster, W. S. Effects of interdecadal climate variability on the oceanic ecosystems of the NE Pacific. Fish. Oceanogr. 7, 1–21 (1998).

    Article 

    Google Scholar 

  • 61.

    Rogers, L. A. & Dougherty, A. B. Effects of climate and demography on reproductive phenology of a harvested marine fish population. Glob. Change Biol. 25, 708–720. https://doi.org/10.1111/gcb.14483 (2019).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Prog. Oceanogr. Accepted (2021).

  • 63.

    Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. Bioscience 67, 271–281. https://doi.org/10.1093/biosci/biw185 (2017).

    Article 

    Google Scholar 

  • 64.

    Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13. https://doi.org/10.1186/s41200-019-0171-8 (2019).

    Article 

    Google Scholar 

  • 65.

    Vander Naald, B. P., Sergeant, C. J. & Beaudreau, A. H. Public perception and valuation of long-term ecological monitoring. Ecosphere 10, e02875. https://doi.org/10.1002/ecs2.2875 (2019).

    Article 

    Google Scholar 

  • 66.

    Hollowed, A. B. et al. Recent advances in understanding the effects of climate change on the world’s oceans. ICES J. Mar. Sci. 76, 1215–1220. https://doi.org/10.1093/icesjms/fsz084 (2019).

    Article 

    Google Scholar 

  • 67.

    R: A language and environment for statistical computing. (R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/, 2020).

  • 68.

    Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R. & Beukema, J. J. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14, 665–685. https://doi.org/10.1002/env.611 (2003).

    Article 

    Google Scholar 

  • 69.

    Holmes, E., Ward, E., Scheuerell, M. & Wills, L. MARSS: multivariate autoregressive state-space modeling (Northwest Fisheries Science Center NOAA, Seattle, WA, 2018).

    Google Scholar 

  • 70.

    Holmes, E. E., Ward, E. J. & Scheuerell, M. D. Analysis of multivariate time-series using the MARSS package, v3.10.10. 284 (Northwest Fisheries Science Center, NOAA, Seattle, WA, USA, 2018).

  • 71.

    Zuur, A. F., Tuck, I. D. & Bailey, N. Dynamic factor analysis to estimate common trends in fisheries time series. Can. J. Fish. Aquat. Sci. 60, 542–552. https://doi.org/10.1139/f03-030 (2003).

    Article 

    Google Scholar 

  • 72.

    Clarke, K. R. & Gorley, R. N. Getting started with PRIMER v7 (PRIMER-E ltd, Plymouth, 2015).

    Google Scholar 

  • 73.

    Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in marine communities: an approach to statistical analysis and interpretation (PRIMER-E ltd, Plymouth, 2014).

    Google Scholar 

  • 74.

    Clarke, K. R., Somerfield, P. J. & Gorley, R. N. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol. 366, 56–69. https://doi.org/10.1016/j.jembe.2008.07.009 (2008).

    Article 

    Google Scholar 

  • 75.

    Strom, S. L., Fredrickson, K. A. & Bright, K. J. Spring phytoplankton in the eastern coastal Gulf of Alaska: photosynthesis and production during high and low bloom years. Deep Sea Res. Part II 132, 107–121. https://doi.org/10.1016/j.dsr2.2015.05.003 (2016).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Strom, S. L., Fredrickson, K. A. & Bright, K. J. Microzooplankton in the coastal Gulf of Alaska: Regional, seasonal and interannual variations. Deep Sea Res. Part II 165, 192–202. https://doi.org/10.1016/j.dsr2.2018.07.012 (2019).

    Article 

    Google Scholar 

  • 77.

    Mackas, D. L. Interannual variability of the zooplankton community off southern Vancouver Island. Can. Sp. Publ. Fish. Aquat. Sci. 121, 603–615 (1995).

    Google Scholar 

  • 78.

    Kimmel, D. G. & Duffy-Anderson, J. T. Zooplankton abundance trends and patterns in Shelikof Strait, western Gulf of Alaska, USA, 1990–2017. J. Plankton Res. 42, 334–354. https://doi.org/10.1093/plankt/fbaa019 (2020).

    Article 

    Google Scholar 

  • 79.

    Richardson, A. J. et al. Using continuous plankton recorder data. Prog. Oceanogr. 68, 27–74. https://doi.org/10.1016/j.pocean.2005.09.011 (2006).

    ADS 
    Article 

    Google Scholar 

  • 80.

    Von Szalay, P. G. & Raring, N. W. Data Report: 2017 Gulf of Alaska bottom trawl survey. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-374, 260 p., (2018).

  • 81.

    Matarese, A. C., Blood, D.M., Picquelle, S. J. & J.L., B. Vol. NOAA Prof. Paper NMFS 1, 281 p. 281 (NOAA Professional Paper NMFS 1, 2003).

  • 82.

    Weitzman, B. et al. Changes in rocky intertidal community structure during a marine heatwave in the northern Gulf of Alaska. Front. Mar. Sci., 8. https://www.frontiersin.org/articles/10.3389/fmars.2021.556820/full (2021).

  • 83.

    Bodkin, J. L. et al. Variation in abundance of Pacific Blue Mussel (Mytilus trossulus) in the Northern Gulf of Alaska, 2006–2015. Deep Sea Res. Part II 147, 87–97. https://doi.org/10.1016/j.dsr2.2017.04.008 (2018).

    Article 

    Google Scholar 

  • 84.

    Konar, B. et al. Wasting disease and static environmental variables drive sea star assemblages in the Northern Gulf of Alaska. J. Exp. Mar. Biol. Ecol. 520, 151209. https://doi.org/10.1016/j.jembe.2019.151209 (2019).

    Article 

    Google Scholar 

  • 85.

    Mudge, M. L., Pietrzak, K. W. & Rojek, N. A. Biological monitoring at Chowiet Island, Alaska in 2019. U.S. Fish and Wildl. Serv. Rep., AMNWR 2019/16. Homer, Alaska., 187 (2019).

  • 86.

    Suryan, R. M. & Irons, D. B. Colony and population dynamics of black-legged kittiwakes in a heterogeneous environment. Auk 118, 636–649 (2001).

    Article 

    Google Scholar 

  • 87.

    Harding, A. M. A. et al. Prey density and the behavioral flexibility of a marine predator: the common murre (Uria aalge). Ecology 88, 2024–2033 (2007).

    Article 

    Google Scholar 

  • 88.

    Litzow, M. I., Piatt, J. I., Prichard, A. I. & Roby, D. I. Response of pigeon guillemots to variable abundance of high-lipid and low-lipid prey. Oecologia 132, 286–295 (2002).

    ADS 
    Article 

    Google Scholar 

  • 89.

    Moran, J. R., Heintz, R. A., Straley, J. M. & Vollenweider, J. J. Regional variation in the intensity of humpback whale predation on Pacific herring in the Gulf of Alaska. Deep Sea Res. Part II 147, 187–195. https://doi.org/10.1016/j.dsr2.2017.07.010 (2018).

    Article 

    Google Scholar 

  • 90.

    Robards, M. D., Anthony, J. A., Rose, G. A. & Piatt, J. F. Changes in proximate composition and somatic energy content for Pacific sand lance (Ammodytes hexapterus) from Kachemak Bay, Alaska relative to maturity and season. J. Exp. Mar. Biol. Ecol. 242, 245–258 (1999).

    Article 

    Google Scholar 

  • 91.

    Muradian, M. L., Branch, T. A., Moffitt, S. D. & Hulson, P.-J.F. Bayesian stock assessment of Pacific herring in Prince William Sound Alaska. PLOS ONE 12, e0172153. https://doi.org/10.1371/journal.pone.0172153 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Moffitt, S. D. Retrospective longitudinal growth history from scales of Pacific herring collected in Prince William Sound. (Exxon Valdez Long-Term Herring Research and Monitoring Program Final Report (Project 13120111-N), Exxon Valdez Oil Spill Trustee Council. Anchorage, AK, Anchorage, AK, 2017).

  • 93.

    Batten, S. D., Moffitt, S., Pegau, W. S. & Campbell, R. Plankton indices explain interannual variability in Prince William Sound herring first year growth. Fish. Oceanogr. 25, 420–432. https://doi.org/10.1111/fog.12162 (2016).

    Article 

    Google Scholar 

  • 94.

    Dorn, M. et al. Assessment of the walleye pollock stock in the Gulf of Alaska. 161 ( North Pacific Fishery Management Council, Anchorage, AK, 2019).

  • 95.

    Barbeaux, S. et al. Assessment of the Pacific cod stock in the Gulf of Alaska. 140 (North Pacific Fishery Management Council, Anchorage, AK, 2019).

  • 96.

    Spies, I., Aydin, K., Ianelli, J. N. & Palsson, N. Assessment of the arrowtooth flounder stock in the Gulf of Alaska (North Pacific Fishery Management Council, Anchorage, AK, 2019).

    Google Scholar 

  • 97.

    Hanselman, D. H. et al. Assessment of the Sablefish stock in Alaska. 263 (North Pacific Fishery Management Council, Anchorage, AK, 2019).

  • 98.

    Kettle, A. B. Biological monitoring at East Amatuli Island, Alaska in 2018. U.S. Fish and Wildlife Service Report, AMNWR 2019/13. Homer, Alaska., 84 (2019).

  • 99.

    Coletti, H. et al. Gulf Watch Alaska: Nearshore benthic systems in the Gulf of Alaska. Long-Term Monitoring Program (Gulf Watch Alaska) Final Report (Exxon Valdez Oil Spill Trustee Council Project 16120114-R), Exxon Valdez Oil Spill Trustee Council, Anchorage, Alaska., (2018).

  • 100.

    Bodkin, J. SOP for conducting marine bird and mammal surveys – Version 4.1: Southwest Alaska Inventory and Monitoring Network. Natural Resource Report NPS/SWAN/NRR— 2011/392. National Park Service, Fort Collins, Colorado, USA., (2011).

  • 101.

    Stocking, J., Bishop, M. A. & Arab, A. Spatio-temporal distributions of piscivorous birds in a subarctic sound during the nonbreeding season. Deep Sea Res. Part II 147, 138–147. https://doi.org/10.1016/j.dsr2.2017.07.017 (2018).

    Article 

    Google Scholar 

  • 102.

    102Kuletz, K. J. & Labunski, E. A. Seabird Distribution and Abundance in the Offshore Environment, Final Report. US Dept. of the Interior, Bureau of Ocean Energy Management, Alaska OCS Region. OCS Study BOEM 2017–004. Anchorage, Alaska, USA. 59 pp, plus 400 pages of Appendices (2017).

  • 103.

    Coletti, H. A., Bodkin, J. L., Monson, D. H., Ballachey, B. E. & Dean, T. A. Detecting and inferring cause of change in an Alaska nearshore marine ecosystem. Ecosphere 7, e01489. https://doi.org/10.1002/ecs2.1489 (2016).

    Article 

    Google Scholar 

  • 104.

    Maniscalco, J. M., Springer, A. M., Parker, P. & Adkison, M. D. A longitudinal study of steller sea lion natality rates in the Gulf of Alaska with comparisons to census data. PLoS ONE 9, e111523. https://doi.org/10.1371/journal.pone.0111523 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Sweeney, K., Fritz, L. W., Towell, R. & Gelatt, T. Results of Steller Sea Lion Surveys in Alaska, June-July 2017. 17 (National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, Washington, USA, National Marine Fisheries Service, Alaska Fisheries Science Center, Marine Mammal Laboratory, 7600 Sand Point Way NE, Seattle WA 98115, https://www.fisheries.noaa.gov/resource/data/2017-results-steller-sea-lion-surveys-alaska, 2017).

  • 106.

    Straley, J. M. et al. Seasonal presence and potential influence of humpback whales on wintering Pacific herring populations in the Gulf of Alaska. Deep Sea Res. Part II 147, 173–186. https://doi.org/10.1016/j.dsr2.2017.08.008 (2018).

    Article 

    Google Scholar 

  • 107.

    Olsen, D. W., Matkin, C. O., Andrews, R. D. & Atkinson, S. Seasonal and pod-specific differences in core use areas by resident killer whales in the Northern Gulf of Alaska. Deep Sea Res. Part II 147, 196–202. https://doi.org/10.1016/j.dsr2.2017.10.009 (2018).

    Article 

    Google Scholar 

  • 108.

    ADFG. Alaska Department of Fish and Game Statewide electronic fish ticket database 1985 to present. 1st edition. Alaska Department of Fish and Game, Division of Commercial Fisheries. (Accessed October 2019). (2018).


  • Source: Ecology - nature.com

    How coal’s decline impacts county and school funding

    At MIT Energy Conference, experts zero in on legacy energy systems