in

First description of deep benthic habitats and communities of oceanic islands and seamounts of the Nazca Desventuradas Marine Park, Chile

  • 1.

    Yesson, C., Clark, M. R., Taylor, M. L. & Rogers, A. D. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep. Res. Part I Oceanogr. Res. Pap. 58, 442–453 (2011).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Preez, CDu., Curtis, J. M. R. & Clarke, M. E. The structure and distribution of benthic communities on a shallow seamount (Cobb Seamount, Northeast Pacific Ocean). PLoS ONE 11, 1–29 (2016).

    Article 
    CAS 

    Google Scholar 

  • 3.

    Auster, P. J. et al. Definition and detection of vulnerable marine ecosystems on the high seas: problems with the ‘move-on’ rule. ICES J. Mar. Sci. 68, 254–264 (2011).

    Article 

    Google Scholar 

  • 4.

    Watling, L. & Auster, P. J. Seamounts on the high seas should be managed as vulnerable marine ecosystems. Front. Mar. Sci. 4, 1–4 (2017).

    Article 

    Google Scholar 

  • 5.

    Cho, W. W. Faunal Biogeography, Community Structure, and Genetic Connectivity of North Atlantic Seamounts (Massachusetts Institute of Technology & Woods Hole Oceanographic Institution, 2008).

  • 6.

    Rogers, A. D. The Biology of Seamounts: 25 Years on. Advances in Marine Biology vol. 79 (Elsevie, 2018).

  • 7.

    Wagner, D. et al. The Salas y Gómez and Nazca ridges: a global diversity hotspot in need of protection. 28 (2020).

  • 8.

    Kvile, K. O., Taranto, G. H., Pitcher, T. J. & Morato, T. A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework. Biol. Conserv. 173, 108–120 (2014).

    Article 

    Google Scholar 

  • 9.

    Victorero, L., Robert, K., Robinson, L. F., Taylor, M. L. & Huvenne, V. A. I. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Sci. Rep. 8, 1–11 (2018).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Yesson, C. et al. Improved bathymetry leads to 4000 new seamount predictions in the global ocean. UCL Open Environ. Preprint, 1–12 (2020).

  • 11.

    Gálvez Larach, M. Montes submarinos de Nazca y Salas y Gómez: una revisión para el manejo y conservación. Lat. Am. J. Aquat. Res. 37, 479–500 (2009).

    Article 

    Google Scholar 

  • 12.

    Jarrard, R. D. & Clague, D. A. Implications of Pacific Island and seamount ages for the origin of volcanic chains. Rev. Geophys. 15, 57–76 (1977).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Chave, E. H. & Jones, A. T. Deep-water megafauna of the Kohala and Haleakala slopes, Alenuihaha Channel Hawaii. Deep Sea Res. Part A Oceanogr. Res. Pap. 38, 781–803 (1991).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Kitchingman, A., Lai, S., Morato, T. & Pauly, D. How many seamounts are there and where are they located? In Seamounts: Ecology, Fisheries & Conservation, Series 12 (eds Pitcher, T. J. et al.) 26–40 (Blackwell Publishing, 2008). https://doi.org/10.1002/9780470691953.ch2.

    Google Scholar 

  • 15.

    Parin, N. V., Mironov, A. N. & Nesis, K. M. Biology of the Nazca and Sala y Gómez submarine ridges, an outpost of the Indo-West Pacific fauna in the eastern Pacific ocean: composition and distribution of the fauna, its communities and history. Advances in Marine Biology vol. 32 (1997).

  • 16.

    Samadi, S., Schlacher, T. & Richer de Forges, B. Seamount benthos. In Seamounts: Ecology, Fisheries and Conservation (eds Pitcher, T. et al.) 119–140 (Wiley-Blackwell, 2007).

    Google Scholar 

  • 17.

    Mironov, A. N., Molodtsova, T. N. & Parin., N. V. Soviet and Russian studies on seamount biology. (2006).

  • 18.

    Fernández, M., Pappalardo, P., Rodríguez-Ruiz, M. C. & Castilla, J. C. Síntesis del estado del conocimiento sobre la riqueza de especies de macroalgas, macroinvertebrados y peces en aguas costeras y oceánicas de Isla de Pascua e Isla Salas y Gómez. Lat. Am. J. Aquat. Res. 42, 760–802 (2014).

    Article 

    Google Scholar 

  • 19.

    Easton, E. E. et al. Chile and the Salas y Gómez Ridge. In Mesophotic Coral Ecosystems 477–490 (Springer, 2019). https://doi.org/10.1007/978-3-319-92735-0_27.

  • 20.

    Friedlander, A. M. et al. Marine biodiversity in Juan Fernández and Desventuradas islands, Chile: global endemism hotspots. PLoS ONE 11, e0145059 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Sellanes, J., Salisbury, R. A., Tapia, J. M. & Asorey, C. M. A new species of Atrimitra Dall, 1918 (Gastropoda: Mitridae) from seamounts of the recently created Nazca-Desventuradas Marine Park Chile. PeerJ 2019, 1–16 (2019).

    Google Scholar 

  • 22.

    Gaymer, C. F. et al. Plan General de Administración y su Valoración Económica. Informe final proyecto FIPA 2016–31 ‘Bases técnicas para la gestión del Parque Marino Nazca-Desventuradas y propuesta de Plan General de Administración’ (2018).

  • 23.

    Clark, M. R. et al. The ecology of seamounts: structure, function, and human impacts. Ann. Rev. Mar. Sci. 2, 253–278 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 24.

    Henry, L. A. et al. Environmental variability and biodiversity of megabenthos on the Hebrides Terrace Seamount (Northeast Atlantic). Sci. Rep. 4, 1–10 (2014).

    Google Scholar 

  • 25.

    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373 (1994).

    Article 

    Google Scholar 

  • 26.

    Morgan, N. B., Goode, S., Roark, E. B. & Baco, A. R. Fine scale assemblage structure of benthic invertebrate megafauna on the North Pacific Seamount Mokumanamana. Front. Mar. Sci. 6, 1–21 (2019).

    Article 

    Google Scholar 

  • 27.

    Davies, J. S. et al. Benthic assemblages of the Anton Dohrn Seamount (NE Atlantic): defining deep-sea biotopes to support habitat mapping and management efforts with a focus on vulnerable marine ecosystems. PLoS ONE 10, 33 (2015).

    Google Scholar 

  • 28.

    Auster, P. J., Malatesta, R. J. & Larosa, S. C. Patterns of microhabitat utilization by mobile megafauna on the southern New England (USA) continental shelf and slope. Mar. Ecol. Prog. Ser. 127, 77–85 (1995).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Uzmann, J. R., Cooper, R. A., Theroux, R. B. & Wigley, R. L. Synoptic comparison of three sampling techniques for estimating abundance and distribution of selected megafauna: submersible vs. camera sled vs. otter trawl. Mar. Fish. Rev. 39, 11–19 (1977).

    Google Scholar 

  • 30.

    Valentine, J. P. & Edgar, G. J. Impacts of a population outbreak of the urchin Tripneustes gratilla amongst Lord Howe Island coral communities. Coral Reefs 29, 399–410 (2010).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Greene, H. et al. A classification scheme for deep seafloor habitats. Oceanol. Acta 22, 663–678 (1999).

    Article 

    Google Scholar 

  • 32.

    Greene, H., O’Connell, V., Brylinsky, C. & Reynolds, J. Marine Benthic Habitat classification: What’s Best for Alaska? In Marine Habitat Mapping Technology for Alaska (eds Reynolds, J. & Greene, H. G.) 169–184 (Alaska Sea Grant College Program University of Alaska Fairbanks, 2008). https://doi.org/10.4027/mhmta.2008.12.

    Google Scholar 

  • 33.

    Naar, D. F., Johnson, K. P., Wessel, D., Duncan, P. & Mahoney, J. Rapa Nui. 2001: Cruise report for Leg 6 of the Drift expedition aboard the R/V Revelle (2001).

  • 34.

    Haase, K. M., Stoffers, P. & Garbe-Schönberg, C. D. The petrogenetic evolution of lavas from Easter Island and neighbouring seamounts, near-ridge hotspot volcanoes in the SE pacific. J. Petrol. 38, 785–813 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Woods, M. T. & Okal, E. A. The structure of the Nazca Ridge and Sala y Gomez seamount chain from the dispersion of Rayleigh waves. Geophys. J. Int. 117, 205–222 (1994).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Rodrigo, C., Foucher, N., Philippi, N. & Lara, L. E. Morfoestructuras volcánicas y sedimentarias de los montes submarinos de la región de las islas Desventuradas, basadas en el análisis de datos acústicos. 110–115 (2017).

  • 37.

    Mecho, A. et al. Environmental drivers of mesophotic echinoderm assemblages of the Southeastern Pacific Ocean. Front Mar. Sci. 8, 1–15 (2021).

    Article 

    Google Scholar 

  • 38.

    VLC media player – Open Source Multimedia Framework and Player.

  • 39.

    Dyer, B. S. & Westneat, M. W. Taxonomía y biogeografía de los peces costeros del Archipiélago de Juan Fernández y de las islas Desventuradas Chile. Rev. Biol. Mar. Oceanogr. 45, 589–617 (2010).

    Article 

    Google Scholar 

  • 40.

    Pequeño, G. & Lamilla, J. The Littoral Fish Assemblage of the Desventuradas Islands (Chile) Has Zoogeographical Affinities with the Western Pacific. Glob. Ecol. Biogeogr. 9, 431–437 (2000).

    Article 

    Google Scholar 

  • 41.

    Raines, B. & Huber, M. Biodiversity Quadrupled-Revision of Easter Island and Salas y Gómez Bivalves. Zootaxa 106 (2012).

  • 42.

    Retamal, M. A. & Moyano, H. I. Zoogeografía de los crustáceos decápodos chilenos marinos y dulceacuícolas. Lat. Am. J. Aquat. Res. 38, 302–328 (2010).

    Google Scholar 

  • 43.

    Sysoev, A. B. Gastropods of the family Turridae (Gastropoda:Toxoglosa) of the Nasca and Sala y Gómez underwater ridges. 124, 245–260 (1990).

  • 44.

    Zarenkov, N. A. Crabs of the familiy Leucosiidae (subfamilies Ebalinae an Iliinae) collected in tropical water of Indian and Pacific oceans waters of Indian and Pacific oceans. Bol. Nauk. 10, 16–26 (1969).

    Google Scholar 

  • 45.

    Zarenkov, N. A. Decapods (Stenopodidea, Brachyura, Anomura) of the underwater Nazca and Salas y Gómez Ridges. Tr. Instituta Okeanol. AN USSR 124, 218–244 (1990).

    Google Scholar 

  • 46.

    Barriga, E., Salazar, C., Palacios, J., Romero, M. & Rodriguez, A. Distribucion, abundancia y estructura poblacional del langostino rojo de profundidad Haliporoides diomedeae (Crustacea: Decapoda: Solenoceridae). Lat. Am. J. Aquat. Res. 37, 371–380 (2009).

    Google Scholar 

  • 47.

    R Core Team. R Core Team (2020). R: A language and environment for statistical computing. version 4.0.3. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

  • 48.

    Oksanen J et al. vegan: Community Ecology Package.R package version 2.5-7. https://cran.r-project.org/package=vegan (2020).

  • 49.

    Jones, D. & Frid, C. L. J. Altering intertidal sediment topography: effects on biodiversity and ecosystem functioning. Mar. Ecol. 30, 83–96 (2009).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

    Google Scholar 

  • 51.

    National Geographic & Oceana. Islas Desventuradas. Biodiversidad marina y propuesta de conservación. 58 (2013).

  • 52.

    Levin, L. A. & Nittrouer, C. A. Textural characteristics of sediment on deep seamounts in the eastern Pacific Ocean between 10°N and 30°N. In Seamounts, Islands and Atolls, 43 (eds Keating, B. et al.) 187–203 (Geophysical Monograph, 1987).

    Google Scholar 

  • 53.

    Lourido, A., Parra, S. & Serrano, A. Preliminary Results on the Composition and Structure of Soft-Bottom Macrobenthic Communities of a Seamount: the Galicia Bank (NE Atlantic Ocean). Thalassas 35, 1–9 (2019).

    Article 

    Google Scholar 

  • 54.

    Flach, E., Muthumbi, A. & Heip, C. Meiofauna and macrofauna community structure in relation to sediment composition at the iberian margin compared to the goban spur (NE atlantic). Prog. Oceanogr. 52, 433–457 (2002).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Levin, L. A. & Gooday, A. The deep Atlantic Ocean floor. In Ecosystems of the Deep Oceans (ed. Tyler, P.) 187–203 (Elsevier, 2003).

    Google Scholar 

  • 56.

    Thistle, D. The deep-sea floor: an overview. In Ecosystems of the World, Ecosystems of the Deep Sea (ed. Tyler, P. A.) 5–37 (Elsevier, 2003).

    Google Scholar 

  • 57.

    Louzao, M. et al. Historical macrobenthic community assemblages in the Avilés Canyon, N Iberian Shelf: Baseline biodiversity information for a marine protected area. J. Mar. Syst. 80, 47–56 (2010).

    Article 

    Google Scholar 

  • 58.

    Kon, K., Tsuchiya, Y., Sato, T., Shinagawa, H. & Yamada, Y. Role of microhabitat heterogeneity in benthic faunal communities in sandy bottom sediments of Oura Bay, Shimoda Japan. Reg. Stud. Mar. Sci. 2, 71–76 (2015).

    Article 

    Google Scholar 

  • 59.

    Clark, M. R., Schlacher, T. A., Rowden, A. A., Stocks, K. I. & Consalvey, M. Science priorities for Seamounts: research links to conservation and management. PLoS ONE 7, e29232 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Zeppilli, D., Pusceddu, A., Trincardi, F. & Danovaro, R. Seafloor heterogeneity influences the biodiversity-ecosystem functioning relationships in the deep sea. Sci. Rep. 6, 1–12 (2016).

    Article 
    CAS 

    Google Scholar 

  • 61.

    de la Torriente, A. et al. Benthic habitat modelling and mapping as a conservation tool for marine protected areas: a seamount in the western Mediterranean. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 732–750 (2019).

    Article 

    Google Scholar 

  • 62.

    Gallardo, M., Macpherson, E., Tapia-Guerra, J. M., Asorey, C. M. & Sellanes, J. A new species of Munida Leach, 1820 (Crustacea: Decapoda: Anomura: Munididae) from seamounts of the Nazca-Desventuradas Marine Park. PeerJ https://doi.org/10.7717/peerj.10531 (2021).

    Article 

    Google Scholar 

  • 63.

    Castilla, J. C. Islas oceánicas chilenas: conocimiento científico y necesidades de investigación (Ediciones Universidad Católica de Chile, 1987).

  • 64.

    Bahamonde, N. San Félix y San Ambrosio, las islas llamadas Desventuradas 85–99 (1987).

  • 65.

    Díaz-Díaz, O., Bone, D., Rodríguez, C. T. & Delgado-Blas, V. H. Poliquetos de Sudamérica. Especial d, 149 (2017).

  • 66.

    Díaz-Díaz, O. F., Rozbaczylo, N., Sellanes, J. & Tapia-Guerra, J. M. A new species of Eunice Cuvier, 1817 (Polychaeta: Eunicidae) from the slope of the Desventuradas Islands and seamounts of the Nazca Ridge, southeastern Pacific Ocean. A New Species Cuscus 4860, 211–226 (2020).

    Google Scholar 

  • 67.

    Kantor, Y. & Sysoev, A. Latiaxis (Babelomurex) naskensis, a new species of Coralliophilidae (Gastropoda) from South-Eastern Pacific. Ruthenica 2, 163–167 (1992).

    Google Scholar 

  • 68.

    Sepulveda, J. I. Peces de las Islas Oceánicas Chilenas. In Islas Oceánicas Chilenas: Conocimiento científico y necesidades de Investigaciones. (ed. Castilla, J.) 225–246 (Ediciones Universidad Católica de Chile, 1987).

  • 69.

    Mironov, A. & Detinova., N. Bottom fauna of the Nazca and Sala y Gomez ridges. Plankton and benthos from the Nazca and Sala y Gomez Submarine Ridges 269–278 (1990).

  • 70.

    Lundsten, L. et al. Benthic invertebrate communities on three seamounts off southern and central California USA. Mar. Ecol. Prog. Ser. 374, 23–32 (2009).

    ADS 
    Article 

    Google Scholar 

  • 71.

    Rex, M. A. et al. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar. Ecol. Prog. Ser. 317, 1–8 (2006).

    ADS 
    Article 

    Google Scholar 

  • 72.

    QGIS.org. QGIS Geographic Information System.QGIS Association. Version 3.10. https://www.qgis.org (2020).


  • Source: Ecology - nature.com

    How coal’s decline impacts county and school funding

    At MIT Energy Conference, experts zero in on legacy energy systems