in

Distribution and altitudinal patterns of carbon and nitrogen storage in various forest ecosystems in the central Yunnan Plateau, China

  • 1.

    Sharrow, S. H. & Ismail, S. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agrofor. Syst. 60(2), 123–130 (2004).

    Article 

    Google Scholar 

  • 2.

    Yang, L. L. et al. Carbon and nitrogen storage and distribution in four forest ecosystems in Liupan Mountains, Northwestern China. Acta. Ecol. Sin. 35(15), 5215–5227 (2015).

    Google Scholar 

  • 3.

    Watson, R. T. et al. Land use, land-use change, and forestry. In: Published for the Intergovernmental Panel on Climate Change. Cambridge University Press, pp. 308 (2000).

  • 4.

    Zhao, M. M. et al. Estimation of China’s forest stand biomass carbon sequestration based on the continuous biomass expansion factor model and seven forest inventories from 1977 to 2013. For. Ecol. Manag. 448, 528–534 (2019).

    Article 

    Google Scholar 

  • 5.

    Dale, V. H. et al. Climate change and forest disturbances. Bioscience 51, 723–734 (2001).

    Article 

    Google Scholar 

  • 6.

    Gunderson, P. Carbon—Nitrogen Interactions in Forest Ecosystems—Final Report. Danish Centre for Forest, Landscape and Planning, Denmark (2006).

  • 7.

    Hook, P. B. & Burke, I. C. Biogeochemistry in a shortgrass landscape: control by topography, soil texture, and microclimate. Ecology 81, 2686–2703 (2000).

    Article 

    Google Scholar 

  • 8.

    Vourlitis, G. L., Zorba, G., Pasquini, S. C. & Mustard, R. Carbon and nitrogen storage in soil and litter of southern Californian semi-arid shrublands. J. Arid Environ. 70, 164–173 (2007).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Liu, G. H., Fu, B. & Fang, J. Y. Carbon dynamics of Chinese forests and its contribution to global carbon balance. Acta. Ecol. Sin. 20(5), 733–740 (2000).

    Google Scholar 

  • 11.

    IPCC. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007).

  • 12.

    Phillips, J. et al. Live aboveground carbon stocks in natural forests of Colombia. For. Ecol. Manag. 374, 119–128 (2016).

    Article 

    Google Scholar 

  • 13.

    Gibbs, H. K., Brown, B., Niles, J. O. & Foley, J. A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2(4), 1–13 (2007).

    Google Scholar 

  • 14.

    Aragão, L. et al. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6, 2759–2778 (2009).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Malhi, Y. et al. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob. Chang. Biol. 15, 1255–1274 (2009).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Post, W. M. & Kwon, K. C. Soil carbon sequestration and land use change: processes and potential. Glob. Chang. Biol. 6, 317–327 (2000).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Ma, J. et al. Ecosystem carbon storage distribution between plant and soil in different forest types in Northeastern China. Ecol. Eng. 81, 353–362 (2015).

    Article 

    Google Scholar 

  • 18.

    Davidson, E. A., Trumbore, S. E. & Amundson, R. Biogeochemistry—soil warming and organic carbon content. Nature 408, 789–790 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Chaturvedi, R. K. & Raghubanshi, A. S. Aboveground biomass estimation of small diameter woody species of tropical dry forest. New For. 44, 509–519 (2013).

    Article 

    Google Scholar 

  • 20.

    Wen, D. & He, N. P. Forest carbon storage along the north-south transect of eastern china: spatial patterns, allocation, and influencing factors. Ecol. Indic. 61, 960–967 (2016).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Fan, S. et al. A large terrestrial carbon sink in North America implied by atmospheric andoceanic carbon dioxide data and models. Science 282, 442–446 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Gough, C. M., Vogel, C. S., Schmid, H. P. & Curtis, P. S. Controls on annual forest carbon storage: lessons from the past and predictions for the future. Bioscience 58, 609–622 (2008).

    Article 

    Google Scholar 

  • 23.

    Van Deusen, P. Carbon sequestration potential of forest land: Management for products and bioenergy versus preservation. Biomass Bioenerg. 34, 1687–1694 (2010).

    Article 

    Google Scholar 

  • 24.

    Bradford, J. B., Jensen, N. R., Domke, G. M. & D’Amato, A. W. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks. For. Ecol. Manag. 308, 178–187 (2013).

    Article 

    Google Scholar 

  • 25.

    Park, A. Carbon storage and stand conversion in a pine-dominated boreal forest landscape. For. Ecol. Manag. 340, 70–81 (2015).

    Article 

    Google Scholar 

  • 26.

    Wang, S. J., Zhao, J. X. & Chen, Q. B. Controlling factors of soil CO2 efflux in Pinusyunnanensis across different stand ages. PLoS ONE 10(5), e0127274. https://doi.org/10.1371/journal.pone.0127274 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Liu, J. et al. Distinct soil bacterial communities in response to the cropping system in a Mollisol of northeast China. Appl. Soil Ecol. 119, 407–416 (2017).

    Article 

    Google Scholar 

  • 28.

    Kavvadias, V. A. et al. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. For. Ecol. Manag. 144, 113–127 (2001).

    Article 

    Google Scholar 

  • 29.

    Dai, W. et al. Spatial pattern of carbon stocks in forest ecosystems of a typical subtropical region of Southeastern China. For. Ecol. Manag. 409, 288–297 (2018).

    Article 

    Google Scholar 

  • 30.

    Liu, S. et al. Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan. Acta. Ecol. Sin. 37(4), 1074–1083 (2017).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Kern, J., Giani, L., Teixeira, W., Lanza, G. & Glaser, B. What can we learn from ancient fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon sequestration?. CATENA 172, 104–112 (2019).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Zhang, Z. H., Wang, L. C., Luo, J. X. & Zheng, D. R. Study on tree biomass models of Pinus Yunnanensis Faranch in Northwest Yunnan Province. J. Shandong For. Sci. Technol. 4, 4–6 (2011) ((in Chinese)).

    ADS 

    Google Scholar 

  • 33.

    Chen, C. Biomass and production of the Arbor-Layers in Pinus armandii forests. J. Northwestern Coll. For. 1, 1–18 (1984) ((in Chinese)).

    Google Scholar 

  • 34.

    Liu, S. R., Su, Y. M., Cai, X. H. & Ma, Q. Y. Aboveground biomass of quercus aquifolioides shrub community and its responses to altitudinal gradients in balangshan mountain, Shichuan province. Sci. Silvae. Sin. 42, 1–7 (2006) ((in Chinese)).

    Google Scholar 

  • 35.

    Li, J. L., Liang, S. C. & Chen, S. Z. A preliminary study on the biomass models of keteleeria davidiana var chien-peii colony in qingyan town of Guizhou province. J. Guizhou Normal Univ. 15, 7–12 (1997) ((in Chinese)).

    CAS 

    Google Scholar 

  • 36.

    Yang, L. L. et al. Carbon and nitrogen storage and distribution in four forest ecosystems in Liupan Mountains, northwestern China. Acta. Ecol. Sin. 35, 5215–5227 (2015) ((in Chinese)).

    Google Scholar 

  • 37.

    Xie, S. C., Liu, W. Y., Li, S. C. & Yang, G. P. Preliminary studies on the biomass of middle-mountain moist evergreen broadleaved forests in Ailao Mountain, Yunnan. Acta Phytoecol. Sin. 20, 167–176 (1996) ((in Chinese)).

    Google Scholar 

  • 38.

    Shen, Y., Tian, D. L., Yan, W. D. & Xiao, Y. Biomass and its distribution of natural secondary quercus fabri + sassafras tsumu+ cunninghamia lanceolata community in Yuanling county, Hunan province. J. Cent. South Univ. For. Technol. 31, 44–51 (2011) ((in Chinese)).

    CAS 

    Google Scholar 

  • 39.

    Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Global Change Biol. 8, 345–360 (2002).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Zhou, Y. R., Yu, Z. L. & Zhao, S. D. Carbon storage and budget of major Chinese forest types. Acta. Phytoecol. Sin. 24, 518–522 (2000) ((in Chinese)).

    Google Scholar 

  • 41.

    Eslamdoust, J. & Sohrabi, H. Carbon storage in biomass, litter, and soil of different native and introduced fast-growing tree plantations in the South Caspian Sea. J. For. Res. 29, 449–457 (2018).

    CAS 
    Article 

    Google Scholar 

  • 42.

    He, Y. J. et al. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. For. Ecol. Manag. 295, 193–198 (2013).

    Article 

    Google Scholar 

  • 43.

    Ren, H. et al. Spatial and temporal patterns of carbon storage from 1992 to 2002 in forest ecosystems in Guangdong, Southern China. Plant Soil 363, 123–138 (2013).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Ali, F., Khan, N., Ahmad, A. & Khan, A. A. Structure and biomass carbon of Olea ferruginea forests in the foot hills of Malakand division, Hindukush range mountains of Pakistan. Acta. Ecol. Sin. 39, 261–266 (2019).

    Article 

    Google Scholar 

  • 45.

    Ren, Y. et al. Potential for forest vegetation carbon storage in Fujian Province, China, determined from forest inventories. Plant Soil 345, 125–140 (2011).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Fu, W. J. et al. Spatial variation of biomass carbon density in a subtropical region of Southeastern China. Forests 6, 1966–1981 (2015).

    Article 

    Google Scholar 

  • 47.

    Fonseca, W., Alice, F. E. & Rey-Benayas, J. M. Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. New For. 43, 197–211 (2012).

    Article 

    Google Scholar 

  • 48.

    Nelson, A., Saunders, M., Wagner, R. & Weiskittel, A. Early stand production of hybrid poplar and white spruce in mixed and monospecific plantations in eastern Maine. New For. 43, 519–534 (2012).

    Article 

    Google Scholar 

  • 49.

    Gao, Y., Cheng, J., Ma, Z., Zhao, Y. & Su, J. Carbon storage in biomass, litter, and soil of different plantations in a semiarid temperate region of northwest China. Ann. For. Sci. 71, 427–435 (2014).

    Article 

    Google Scholar 

  • 50.

    Fortier, J., Gagnon, D., Truax, B. & Lambert, F. Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips. Biomass Bioenerg. 34, 1028–1040 (2010).

    Article 

    Google Scholar 

  • 51.

    González-Rodríguez, H. et al. Litterfall deposition and leaf litter nutrient return in different locations at Northeastern Mexico. Plant Ecol. 212, 1747–1757 (2011).

    Article 

    Google Scholar 

  • 52.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science https://doi.org/10.1126/science.1201609 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 53.

    Bradford, J. B., Birdsey, R. A., Joyce, L. A. & Ryan, M. G. Tree age, disturbance history and carbon stocks and fluxes in subalpine rocky mountain forests. Global Change Biol. 14, 2882–2897 (2008).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Zhang, C. N., Yan, X. D. & Yang, J. H. Estimation of nitrogen reserves in forest soils of China. J. Southwest Agric. Univ. 26, 572-575+579 (2004) ((in Chinese)).

    Google Scholar 

  • 55.

    Lee, K. L., Ong, K. H., King, P. J. H., Chubo, J. K. & Su, D. S. A. Stand productivity, carbon content, and soil nutrients in different stand ages of Acacia mangium in Sarawak, Malaysia. Turk. J. Agric. For. 39, 154–161 (2015).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Cao, B., Domke, G. M., Russell, M. B. & Walters, B. F. Spatial modeling of litter and soil carbon stocks on forest land in the conterminous United States. Sci. Total Environ. 654, 94–106 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Deng, L., Wang, K. B., Chen, M. L., Shangguan, Z. P. & Sweeney, S. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. CATENA 110, 1–7 (2013).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Zhu, B. et al. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. J. Plant Res. 123, 439–452 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 59.

    Xie, X. L., Sun, B., Zhou, H. Z. & Li, A. B. Soil organic carbon storage in China. Pedosphere 14, 491–500 (2004).

    CAS 

    Google Scholar 

  • 60.

    Leuschner, C., Moser, G., Bertsch, C., Röderstein, M. & Hertel, D. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl. Ecol. 8, 219–230 (2007).

    Article 

    Google Scholar 

  • 61.

    Singh, S. P., Adhikari, B. S. & Zobel, D. B. Biomass, productivity, leaf longevity, and forest structure in the central Himalaya. Ecol. Monog. 64, 401–421 (1994).

    Article 

    Google Scholar 

  • 62.

    Kirschbaum, M. U. F. Will changes in soil organic carbon act as a positive or negative feedback on global warming?. Biogeochemistry 27, 753–760 (2000).

    Article 

    Google Scholar 

  • 63.

    Raich, J. W., Russel, A. E., Kitayama, K., Parton, W. J. & Vitousek, P. M. Temperature influences carbon accumulation in moist tropical forests. Ecology 87, 76–87 (2006).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    How coal’s decline impacts county and school funding

    At MIT Energy Conference, experts zero in on legacy energy systems