Holzner, W. Concepts, categories and characteristics of weeds. Biol. Ecol. Weeds https://doi.org/10.1007/978-94-017-0916-3_1 (1982).
Google Scholar
Randall, J. M. Weed control for the preservation of biological diversity. Weed Technol. 10, 370–383 (1996).
Google Scholar
Atkinson, I. A. E. Problem Weeds on New Zealand Islands. (Dept. of Conservation, 1997).
Goslee, S. C., Peters, D. P. C. & Beck, K. G. Modeling invasive weeds in grasslands: the role of allelopathy in Acroptilon repens invasion. Ecological Modelling (2001). https://www.sciencedirect.com/science/article/pii/S0304380001002319. Accessed 2 Oct 2020.
Dawson, W., Burslem, D. F. R. P. & Hulme, P. E. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97, 657–665 (2009).
Google Scholar
Baker, H. G. The evolution of weeds, annual review of ecology, evolution, and systematics. DeepDyve (1974). https://www.deepdyve.com/lp/annual-reviews/the-evolution-of-weeds-YxSFG7LI8J. Accessed 2 Oct 2020.
Perrins, J., Williamson, M. & Fitter, A. A survey of differing views of weed classification: Implications for regulation of introductions. Biol. Conserv. 60, 47–56 (1992).
Google Scholar
Mack, R. N. Predicting the identity and fate of plant invaders: Emergent and emerging approaches. Biol. Conserv. 78, 107–121 (1996).
Google Scholar
Sutherland, S. What Makes a Weed a Weed: Life History Traits of Native (2004). https://www.jstor.org/stable/pdf/40005745.pdf. Accessed 2 Oct 2020.
Leather, G. R. Weed control using allelopathic crop plants. J. Chem. Ecol. 9, 983–989 (1983).
Google Scholar
Mersie, W. & Singh, M. Allelopathic effect of parthenium (Parthenium hysterophorus L.) extract and residue on some agronomic crops and weeds. J. Chem. Ecol. 13, 1739–1747 (1987).
Google Scholar
Derya, E., yildiz, O. & Nelson, E. T. (PDF) Ecology, Competitive Advantages, and Integrated (2006). https://www.researchgate.net/publication/287491753_Ecology_Competitive_Advantages_and_Integrated_Control_of_Rhododendron_An_Old_Ornamental_yet_Emerging_Invasive_Weed_Around_the_Globe. Accessed 2 Oct 2020.
Clements, D. R. & Ditommaso, A. Climate change and weed adaptation: Can evolution of invasive plants lead to greater range expansion than forecasted?. Weed Res. 51, 227–240 (2011).
Google Scholar
Sebasky, M. E., Keller, S. R. & Taylor, D. R. Investigating past range dynamics for a weed of cultivation, Silene vulgaris. Ecol. Evol. 6, 4800–4811 (2016).
Google Scholar
Hodgins, K. Unearthing the impact of human disturbance on a notorious weed. Mol. Ecol. 23, 2141–2143 (2014).
Google Scholar
Hobbs, R. J. & Huenneke, L. F. Disturbance, diversity, and invasion: Implications for conservation. Ecosyst. Manag. https://doi.org/10.1007/978-1-4612-4018-1_16 (1992).
Google Scholar
Lozon, J. D. & Macisaac, H. J. Biological invasions: Are they dependent on disturbance?. Environ. Rev. 5, 131–144 (1997).
Google Scholar
Ditomaso, J. M. Invasive weeds in rangelands: Species, impacts, and management. Weed Sci. 48, 255–265 (2000).
Google Scholar
Larson, D. L., Anderson, P. J. & Newton, W. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance. Ecol. Appl. 11, 128–141 (2001).
Google Scholar
Chiuffo, M. C., Cock, M. C., Prina, A. O. & Hierro, J. L. Response of native and non-native ruderals to natural and human disturbance. Biol. Invasions 20, 2915–2925 (2018).
Google Scholar
Kariyat, R. R., Scanlon, S. R., Mescher, M. C., De Moraes, C. M. & Stephenson, A. G. Inbreeding depression in Solanum carolinense (Solanaceae) under field conditions and implications for mating system evolution. PLoS ONE (2011). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236180/. Accessed 2 Oct 2020.
Li, B., Shibuya, T., Yogo, Y. & Hara, T. Effects of ramet clipping and nutrient availability on growth and biomass allocation of yellow nutsedge. Ecol. Res. 19, 603–612 (2004).
Google Scholar
Jia, X., Pan, X. Y., Li, B., Chen, J. K. & Yang, X. Z. Allometric growth, disturbance regime, and dilemmas of controlling invasive plants: A model analysis. Biol. Invasions 11, 743–752 (2008).
Google Scholar
Ramula, S. Annual mowing has the potential to reduce the invasion of herbaceous Lupinus polyphyllus. Biol. Invasions 22, 3163–3173 (2020).
Google Scholar
Liu, X. & Huang, B. Mowing effects on root production, growth, and mortality of creeping bentgrass. Crop Sci. 42, 1241–1250 (2002).
Google Scholar
Biazzo, J. & Milbrath, L. R. Response of pale swallowwort (Vincetoxicum rossicum) to multiple years of mowing. Invasive Plant Sci. Manag. 12, 169–175 (2019).
Google Scholar
Yong, X.-H. et al. Maternal Mowing Effect on Seed Traits of an Invasive Weed, Erigeron annus in farmland. Sains Malay. 44, 347–354 (2015).
Google Scholar
Mithöfer, A., Wanner, G. & Boland, W. Effects of feeding spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol. 137, 1160–1168 (2005).
Google Scholar
Engelberth, J. & Engelberth, M. The Costs of Green Leaf Volatile-Induced Defense Priming: Temporal Diversity in Growth Responses to Mechanical Wounding and Insect Herbivory. Plants 8, 23 (2019).
Google Scholar
Erfmeier, A. & Bruelheide, H. Invasive and nativeRhododendron ponticumpopulations: Is there evidence for genotypic differences in germination and growth?. Ecography 28, 417–428 (2005).
Google Scholar
Milbau, A., Nijs, I., Van Peer, L., Reheul, D. & De Cauwer, B. Disentangling invasiveness and invasibility during invasion in synthesized grassland communities. New Phytol. 159, 657–667 (2003).
Google Scholar
Etten, M. L. V., Conner, J. K., Chang, S.-M. & Baucom, R. S. Not all weeds are created equal: A database approach uncovers differences in the sexual system of native and introduced weeds. Ecol. Evol. 7, 2636–2642 (2017).
Google Scholar
Baker, H. G. Self-compatibility and establishment after “long-distance” dispersal. Evolution 9, 347 (1955).
Tabassum, S. & Leishman, M. R. It doesn’t take two to tango: Increased capacity for self-fertilization towards range edges of two coastal invasive plant species in eastern Australia. Biol. Invasions 21, 2489–2501 (2019).
Google Scholar
Pannell, J. R. & Barrett, S. C. H. Baker’s law revisited: reproductive assurance in a metapopulation. Evolution 52, 657–668 (1998).
Google Scholar
Pannell, J. R. Evolution of the mating system in colonizing plants. Mol. Ecol. 24, 2018–2037 (2015).
Google Scholar
Mena-Ali, J. I., Keser, L. H. & Stephenson, A. G. Inbreeding depression in Solanum carolinense (Solanaceae), a species with a plastic self-incompatibility response. BMC Evol. Biol. 8, 10 (2008).
Google Scholar
Chauhan, B. S., Migo, T., Westerman, P. R. & Johnson, D. E. Post-dispersal predation of weed seeds in rice fields. Weed Res. 50, 553–560 (2010).
Google Scholar
Muniappan, R. & Viraktamath, C. A. Invasive alien weeds in the Western Ghats. Curr. Sci. 64, 555–558 (1993).
Ziller S. R. A Estepe Gramineo-Lenhosa no Segundo Plan-alto do Paraná: Diagnóstico Ambiental com Enfoque à Contami-nacão Biológica (PhD Thesis). Universidade Federal doParaná (2000).
Javaid, A. & Riaz, T. Parthenium hysterophorus L., an alien invasive weed threatening natural vegetations in Punjab, Pakistan. Pak. J. Bot. 44, 123–126 (2012).
Alves, M. T. & Hilker, F. M. Hunting cooperation and Allee effects in predators. J. Theor. Biol. 419, 13–22 (2017).
Google Scholar
Kariyat, R. R., Mauck, K. E., Moraes, C. M. D., Stephenson, A. G. & Mescher, M. C. Inbreeding alters volatile signalling phenotypes and influences tri-trophic interactions in horsenettle (Solanum carolinense L..). Ecol. Lett. 15, 301–309 (2012).
Google Scholar
Nihranz, C. T. et al. Herbivory and inbreeding affect growth, reproduction, and resistance in the rhizomatous offshoots of Solanum carolinense (Solanaceae). Evol. Ecol. 33, 499–520 (2019).
Google Scholar
Nihranz, C. T. et al. Transgenerational impacts of herbivory and inbreeding on reproductive output in Solanum carolinense. Am. J. Bot. 107, 286–297 (2020).
Google Scholar
Wilkens, R. T., Shea, G. O., Halbreich, S. & Stamp, N. E. Resource availability and the trichome defenses of tomato plants. Oecologia 106, 181–191 (1996).
Google Scholar
Zaynab, M. et al. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 124, 198–202 (2018).
Google Scholar
Neilson, E. H., Goodger, J. Q., Woodrow, I. E. & Møller, B. L. Plant chemical defense: at what cost?. Trends Plant Sci. 18, 250–258 (2013).
Google Scholar
Boyd, J. W., Murray, D. S. & Tyrl, R. J. Silverleaf nightshade, Solarium elaeagnifolium, origin, distribution, and relation to man. Econ. Bot. 38, 210–217 (1984).
Google Scholar
EPPO Global Database. Solanum elaeagnifolium (SOLEL)[Documents]| EPPO Global Database. https://gd.eppo.int/taxon/SOLEL/documents. Accessed 5th Nov 2020.
Travlos, I. S. Responses of invasive silverleaf nightshade (Solanum elaeagnifolium) populations to varying soil water availability. Phytoparasitica 41, 41–48 (2012).
Google Scholar
Mekki, M. Biology, distribution and impacts of silverleaf nightshade (Solanum elaeagnifolium Cav.). EPPO Bull. 37, 114–118 (2007).
Google Scholar
Cuthbertson, E.G. Morphology of the underground parts of silverleaf nightshade. 5th Australian Weeds Conference (1976).
Heap, J., Honan, I. & Smith, E. Silverleaf nigthshade: A Technical Handbook for Animal and Plant Control Boards in South Australia (Adelaide, 1997).
Petanidou, T. et al. Self-compatibility and plant invasiveness: Comparing species in native and invasive ranges. Perspect. Plant Ecol. Evol. Syst. 14, 3–12 (2012).
Google Scholar
Kariyat, R. R. & Chavana, J. Field data on plant growth and insect damage on the noxious weed Solanum eleaegnifolium in an unexplored native range. Data Brief 19, 2348–2351 (2018).
Google Scholar
Centibas, M. & Koyuncu, F. The ripening and fruit quality of ‘Monroe’ peaches in response to pre-harvest application gibberellic acid. Akdeniz Üniv. Ziraat Fakült. Dergisi 26, 73–80 (2013).
Pornaro, C., Macolino, S., Menegon, A. & Richardson, M. WinRHIZO technology for measuring morphological traits of Bermudagrass Stolons. Agron. J. 109, 3007–3010 (2017).
Google Scholar
Kariyat, R. R. et al. Inbreeding, herbivory, and the transcriptome of Solanum carolinense. Entomol. Exp. Appl. 144, 134–144 (2012).
Google Scholar
Kariyat, R. R. et al. Feeding on glandular and non-glandular leaf trichomes negatively affect growth and development in tobacco hornworm (Manduca sexta) caterpillars. Arthropod Plant Interact. 13, 321–333 (2019).
Google Scholar
Tayal, M., Chavana, J. & Kariyat, R. R. Efficiency of using electric toothbrush as an alternative to a tuning fork for artificial buzz pollination is independent of instrument buzzing frequency. BMC Ecol. 20, 1 (2020).
Google Scholar
Singh, S. & Kariyat, R. R. Exposure to polyphenol-rich purple corn pericarp extract restricts fall armyworm (Spodoptera frugiperda) growth. Plant Signal. Behav. 15, 1784545 (2020).
Google Scholar
Kariyat, R. R. et al. Constitutive and herbivore-induced structural defenses are compromised by inbreeding in Solanum carolinense (Solanaceae). Am. J. Bot. 100, 1014–1021 (2013).
Google Scholar
Paez-Garcia, A. et al. Root traits and phenotyping strategies for plant improvement. Plants 4, 334–355 (2015).
Google Scholar
Pinke, G., Pál, R. & Botta-Dukát, Z. Effects of environmental factors on weed species composition of cereal and stubble fields in western Hungary. Open Life Sci. 5, 283–292 (2010).
Google Scholar
Tremayne, M. A. & Richards, A. J. Seed weight and seed number affect subsequent fitness in outcrossing and selfing Primula species. New Phytol. 148, 127–142 (2000).
Google Scholar
Ramesh, K., Matloob, A., Aslam, F., Florentine, S. K. & Chauhan, B. S. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Front. Plant Sci. 8, 1 (2017).
Google Scholar
Rha, E. S. & Jamil, M. Gibberellic acid (GA3) enhance seed water uptake, germination and early seedling growth in sugar beet under salt stress. Pak. J. Biol. Sci. 10, 654–658 (2007).
Google Scholar
Stoller, E. W. & Wax, L. M. Periodicity of germination and emergence of some annual weeds. Weed Sci. 21, 574–580 (1973).
Google Scholar
Meyer, S. E. & Pendleton, B. K. Factors affecting seed germination and seedling establishment of a long-lived desert shrub (Coleogyne ramosissima: Rosaceae). Plant Ecol. 178, 171–187 (2005).
Google Scholar
Milbau, A., Scheerlinck, L., Reheul, D., De Cauwer, B. & Nijs, I. Ecophysiological and morphological parameters related to survival in grass species exposed to an extreme climatic event. Physiol. Plant. 125, 500–512 (2005).
Google Scholar
Gioria, M. & Pyšek, P. Early bird catches the worm: Germination as a critical step in plant invasion. Biol. Invasions 19, 1055–1080 (2016).
Google Scholar
Mahmood, A. H. et al. Influence of various environmental factors on seed germination and seedling emergence of a noxious environmental weed: Green galenia (Galenia pubescens). Weed Sci. 64, 486–494 (2016).
Google Scholar
Mcnaughton, S. J. Grazing lawns: On domesticated and wild grazers. Am. Nat. 128, 937–939 (1986).
Google Scholar
McNaughton, S. J. Adaptation of herbivores to seasonal changes in nutrient supply. Nutr. Herb. 1, 391–408 (1987).
Laliberté, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytol. 206, 507–521 (2014).
Google Scholar
Kramer-Walter, K. R. et al. Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 104, 1299–1310 (2016).
Google Scholar
Losapio, G. et al. An invasive plant species enhances biodiversity in overgrazed pastures but inhibits its recovery in protected areas. J. Ecol. https://doi.org/10.1101/2020.08.16.227066 (2020).
Google Scholar
Onen, H., Farooq, S., Gunal, H., Ozaslan, C. & Erdem, H. Higher tolerance to abiotic stresses and soil types may accelerate common ragweed (Ambrosia artemisiifolia) invasion. Weed Sci. 65, 115–127 (2016).
Google Scholar
Wittstock, U. & Gershenzon, J. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 5, 300–307 (2002).
Google Scholar
Mooney, E. H., Tiedeken, E. J., Muth, N. Z. & Niesenbaum, R. A. Differential induced response to generalist and specialist herbivores by Lindera benzoin (Lauraceae) in sun and shade. Oikos 118, 1181–1189 (2009).
Google Scholar
Baldwin, I. T. Plant volatiles. Curr. Biol. 20, 392–397 (2011).
Google Scholar
Coley, P. D., Bryant, J. P. & Chapin, F. S. Resource availability and plant antiherbivore defense. Science 230, 895–899 (1985).
Google Scholar
Fine, P. V. A. Herbivores promote habitat specialization by trees in amazonian forests. Science 305, 663–665 (2004).
Google Scholar
Zandt, P. A. V. Plant defense, growth, and habitat: A comparative assessment of constitutive and induced resistance. Ecology 88, 1984–1993 (2007).
Google Scholar
Salminen, S. O. & Grewal, P. S. Does decreased mowing frequency enhance alkaloid production in endophytic tall fescue and perennial ryegrass?. J. Chem. Ecol. 28, 939–950 (2002).
Google Scholar
Freeman. An Overview of Plant Defenses against Pathogens and Herbivores. The Plant Health Instructor (2008). https://doi.org/10.1094/phi-i-2008-0226-01.
Davis, H. N. et al. Review of Major Crop and Animal Arthropod Pests of South Texas. Subtropical Agriculture and Environments (2020).
Traw, M. B., Kim, J., Enright, S., Cipollini, D. F. & Bergelson, J. Negative cross-talk between salicylate- and jasmonate-mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana. Mol. Ecol. 12, 1125–1135 (2003).
Google Scholar
Bostock, R. M. Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43, 545–580 (2005).
Google Scholar
Lefoe, G. et al. Assessing the fundamental host-range of Leptinotarsa texana Schaeffer as an essential precursor to biological control risk analysis. Biol. Control 143, 104165 (2020).
Google Scholar
Chung, S. H. & Felton, G. W. Specificity of induced resistance in tomato against specialist lepidopteran and coleopteran species. J. Chem. Ecol. 37, 378–386 (2011).
Google Scholar
Korpita, T., Gómez, S. & Orians, C. M. Cues from a specialist herbivore increase tolerance to defoliation in tomato. Funct. Ecol. 28, 395–401 (2013).
Google Scholar
Yang, Q. et al. Plant–soil biota interactions of an invasive species in its native and introduced ranges: Implications for invasion success. Soil Biol. Biochem. 65, 78–85 (2013).
Google Scholar
Blair, A. C. & Wolfe, L. M. The evolution of an invasive plant: An experimental study with Silene latifolia. Ecology 85, 3035–3042 (2004).
Google Scholar
Kariyat, R. R., Smith, J. D., Stephenson, A. G., Moraes, C. M. D. & Mescher, M. C. Non-glandular trichomes of Solanum carolinense deter feeding by Manduca sexta caterpillars and cause damage to the gut peritrophic matrix. Proc. R. Soc. B 284, 20162323 (2017).
Google Scholar
Kariyat, R. R. et al. Leaf trichomes affect caterpillar feeding in an instar-specific manner. Commun. Integr. Biol. 11, 1–6 (2018).
Google Scholar
Karabourniotis, G., Liakopoulos, G., Nikolopoulos, D. & Bresta, P. Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure–function coordination. J. For. Res. 31, 1–12 (2019).
Google Scholar
Kang, J.-H., Shi, F., Jones, A. D., Marks, M. D. & Howe, G. A. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. J. Exp. Bot. 61, 1053–1064 (2009).
Google Scholar
Tian, D., Tooker, J., Peiffer, M., Chung, S. H. & Felton, G. W. Role of trichomes in defense against herbivores: Comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236, 1053–1066 (2012).
Google Scholar
An, F. et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box 1 and 2 That requires EIN2 in arabidopsis. Plant Cell 22, 2384–2401 (2010).
Google Scholar
Lämke, J. & Bäurle, I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 18, 1 (2017).
Google Scholar
Weinhold, A. Transgenerational stress-adaption: an opportunity for ecological epigenetics. Plant Cell Rep. 37, 3–9 (2017).
Google Scholar
Miryeganeh, M. & Saze, H. Epigenetic inheritance and plant evolution. Popul. Ecol. 62, 17–27 (2019).
Google Scholar
Source: Ecology - nature.com