Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14, 1062–1072. https://doi.org/10.1111/j.1461-0248.2011.01669.x (2011).
Google Scholar
Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).
Google Scholar
Kearns, C. A. & Inouye, A. D. W. Techniques for Pollination Biologists (University Press Colorado, 1993).
Rader, R. et al. Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. J. Appl. Ecol. 46, 1080–1087. https://doi.org/10.1111/j.1365-2664.2009.01700.x (2009).
Google Scholar
Ne’eman, G., Jurgens, A., Newstrom-Lloyd, L., Potts, S. G. & Dafni, A. A framework for comparing pollinator performance: Effectiveness and efficiency. Biol. Rev. Camb. Philos. Soc. 85, 435–451. https://doi.org/10.1111/j.1469-185X.2009.00108.x (2010).
Google Scholar
King, C., Ballantyne, G., Willmer, P. G. & Freckleton, R. Why flower visitation is a poor proxy for pollination: Measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol. Evol. 4, 811–818. https://doi.org/10.1111/2041-210x.12074 (2013).
Google Scholar
Wang, H. et al. Evaluation of pollinator effectiveness based on pollen deposition and seed production in a gynodieocious alpine plant, Cyananthus delavayi. Ecol. Evol. 7, 8156–8160. https://doi.org/10.1002/ece3.3391 (2017).
Google Scholar
Ashman, T. L., Alonso, C., Parra-Tabla, V. & Arceo-Gomez, G. Pollen on stigmas as proxies of pollinator competition and facilitation: Complexities, caveats, and future directions. Ann. Bot. https://doi.org/10.1093/aob/mcaa012 (2020).
Google Scholar
Wodehouse, R. P. Pollen grains in the identification and classification of plants 1. The Ambrosiaceae. Bull. Torrey Bot. Club 55, 20 (1928).
Currie, J., Noiton, D., Lawes, S. & Bailey, D. Preliminary results of differentiating apple sports by pollen ultrastructure. Euphytica 98, 155–161. https://doi.org/10.1023/a:1003174529263 (1997).
Google Scholar
Bock, J. H. & Norris, D. O. Additional Approaches in Forensic Plant Science. 129–147. https://doi.org/10.1016/b978-0-12-801475-2.00010-5 (2016).
Depciuch, J., Kasprzyk, I., Drzymala, E. & Parlinska-Wojtan, M. Identification of birch pollen species using FTIR spectroscopy. Aerobiologia (Bologna) 34, 525–538. https://doi.org/10.1007/s10453-018-9528-4 (2018).
Google Scholar
Galimberti, A. et al. A DNA barcoding approach to characterize pollen collected by honeybees. PLoS One 9, e109363. https://doi.org/10.1371/journal.pone.0109363 (2014).
Google Scholar
Keller, A. et al. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biol. (Stuttg.) 17, 558–566. https://doi.org/10.1111/plb.12251 (2015).
Google Scholar
Sickel, W. et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 15, 20. https://doi.org/10.1186/s12898-015-0051-y (2015).
Google Scholar
Bell, K. L. et al. Pollen DNA barcoding: Current applications and future prospects. Genome 59, 629–640. https://doi.org/10.1139/gen-2015-0200 (2016).
Google Scholar
Galliot, J.-N. et al. Investigating a flower-insect forager network in a mountain grassland community using pollen DNA barcoding. J. Insect. Conserv. 21, 827–837. https://doi.org/10.1007/s10841-017-0022-z (2017).
Google Scholar
Bell, K. L. et al. Quantitative and qualitative assessment of pollen DNA metabarcoding using constructed species mixtures. Mol. Ecol. 28, 431–455. https://doi.org/10.1111/mec.14840 (2019).
Google Scholar
Broderick, R. et al. RNA-sequencing reveals early, dynamic transcriptome changes in the corollas of pollinated petunias. BMC Plant Biol. 14, 10 (2014).
Google Scholar
Gómez, E. M., Buti, M., Sargent, D. J., Dicenta, F. & Ortega, E. Transcriptomic analysis of pollen–pistil interactions in almond (Prunus dulcis) identifies candidate genes for components of gametophytic self-incompatibility. Tree Genet Genomes https://doi.org/10.1007/s11295-019-1360-7 (2019).
Google Scholar
Zhang, C. C. et al. Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. BMC Genom. 17, 359. https://doi.org/10.1186/s12864-016-2703-5 (2016).
Google Scholar
Zhang, T. et al. Time-course transcriptome analysis of compatible and incompatible pollen-stigma interactions in Brassica napus L.. Front Plant Sci. 8, 682. https://doi.org/10.3389/fpls.2017.00682 (2017).
Google Scholar
Li, K., Wang, Y. & Qu, H. RNA-Seq analysis of compatible and incompatible styles of Pyrus species at the beginning of pollination. Plant Mol. Biol. 102, 287–306. https://doi.org/10.1007/s11103-019-00948-1 (2020).
Google Scholar
Rutley, N. & Twell, D. A decade of pollen transcriptomics. Plant Reprod. 28, 73–89. https://doi.org/10.1007/s00497-015-0261-7 (2015).
Google Scholar
Conze, L. L., Berlin, S., Le Bail, A. & Kost, B. Transcriptome profiling of tobacco (Nicotiana tabacum) pollen and pollen tubes. BMC Genom. 18, 581. https://doi.org/10.1186/s12864-017-3972-3 (2017).
Google Scholar
He, Y. et al. Transcriptome analysis of self- and cross-pollinated pistils revealing candidate unigenes of self-incompatibility in Camellia oleifera. J. Hortic. Sci. Biotechnol. 95, 19–31. https://doi.org/10.1080/14620316.2019.1632749 (2019).
Google Scholar
Pérez-de-Castro, M. et al. Application of genomic tools in plant breeding. Curr. Genom. 13, 179–195 (2012).
Google Scholar
Leydon, A. R. et al. The molecular dialog between flowering plant reproductive partners defined by SNP-informed RNA-sequencing. Plant Cell 29, 984–1006. https://doi.org/10.1105/tpc.16.00816 (2017).
Google Scholar
Shi, D. et al. Transcriptome and phytohormone analysis reveals a comprehensive phytohormone and pathogen defence response in pear self-/cross-pollination. Plant Cell Rep. 36, 1785–1799. https://doi.org/10.1007/s00299-017-2194-0 (2017).
Google Scholar
Kron, P. & Husband, B. C. The effects of pollen diversity on plant reproduction: Insights from apple. Sex. Plant Reprod. 19, 125–131. https://doi.org/10.1007/s00497-006-0028-2 (2006).
Google Scholar
Matsumoto, S., Soejima, J. & Maejima, T. Influence of repeated pollination on seed number and fruit shape of ‘Fuji’ apples. Sci. Hortic. 137, 131–137. https://doi.org/10.1016/j.scienta.2012.01.033 (2012).
Google Scholar
Garratt, M. P. et al. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agric. Ecosyst. Environ. 184, 34–40. https://doi.org/10.1016/j.agee.2013.10.032 (2014).
Google Scholar
Stavert, J. R., Bailey, C., Kirkland, L. & Rader, R. Pollen tube growth from multiple pollinator visits more accurately quantifies pollinator performance and plant reproduction. Sci. Rep. 10, 16958. https://doi.org/10.1038/s41598-020-73637-5 (2020).
Google Scholar
Rader, R., Howlett, B. G., Cunningham, S. A., Westcott, D. A. & Edwards, W. Spatial and temporal variation in pollinator effectiveness: Do unmanaged insects provide consistent pollination services to mass flowering crops?. J. Appl. Ecol. 49, 126–134. https://doi.org/10.1111/j.1365-2664.2011.02066.x (2012).
Google Scholar
Sorin, Y. B., Mitchell, R. J., Trapnell, D. W. & Karron, J. D. Effects of pollination and postpollination processes on selfing rate in Mimulus ringens. Am. J. Bot. 103, 1524–1528. https://doi.org/10.3732/ajb.1600145 (2016).
Google Scholar
DeLong, C. N., Yoder, K. S., Combs, L., Veilleux, R. E. & Peck, G. M. Apple pollen tube growth rates are regulated by parentage and environment. J. Am. Soc. Hortic. Sci. 141, 548–554. https://doi.org/10.21273/jashs03824-16 (2016).
Google Scholar
Zhao, P., Wang, M. & Zhao, L. Dissecting stylar responses to self-pollination in wild tomato self-compatible and self-incompatible species using comparative proteomics. Plant Physiol. Biochem. 106, 177–186. https://doi.org/10.1016/j.plaphy.2016.05.001 (2016).
Google Scholar
Rao, P. et al. Dynamic transcriptomic analysis of the early response of female flowers of Populus alba x P. glandulosa to pollination. Sci. Rep. 7, 6048. https://doi.org/10.1038/s41598-017-06255-3 (2017).
Google Scholar
Tu, D. et al. Developmental, chemical and transcriptional characteristics of artificially pollinated and hormone-induced parthenocarpic fruits of Siraitia grosvenorii. RSC Adv. 7, 12419–12428. https://doi.org/10.1039/c6ra28341a (2017).
Google Scholar
Hiscock, S. J. & Allen, A. M. Diverse cell signalling pathways regulate pollen–stigma interactions: The search for consensus. New Phytol. 179, 286–317. https://doi.org/10.1111/j.1469-8137.2008.02457.x (2008).
Google Scholar
Xu, X. H., Wang, F., Chen, H., Sun, W. & Zhang, X. S. Transcript profile analyses of maize silks reveal effective activation of genes involved in microtubule-based movement, ubiquitin-dependent protein degradation, and transport in the pollination process. PLoS One 8, e53545. https://doi.org/10.1371/journal.pone.0053545 (2013).
Google Scholar
Habu, T. & Tao, R. Transcriptome analysis of self- and cross-pollinated pistils of Japanese Apricot (Prunus mume Sieb. et Zucc.). J. Jpn. Soc. Hortic. Sci. 83, 95–107. https://doi.org/10.2503/jjshs1.CH-086 (2014).
Google Scholar
Sun, Y. & Xiao, H. Identification of alternative splicing events by RNA sequencing in early growth tomato fruits. BMC Genom. 16, 948. https://doi.org/10.1186/s12864-015-2128-6 (2015).
Google Scholar
Zhao, Y., Li, D. & Liu, T. Pollination-induced transcriptome and phylogenetic analysis in Cymbidium tortisepalum (Orchidaceae). Russ. J. Plant Physiol. 66, 618–627. https://doi.org/10.1134/s1021443719040174 (2019).
Google Scholar
Nishida, S. et al. Pollen–pistil interactions in reproductive interference: Comparisons of heterospecific pollen tube growth from alien species between two native Taraxacum species. Funct. Ecol. 28, 450–457. https://doi.org/10.1111/1365-2435.12165 (2014).
Google Scholar
Briggs, H. M. et al. Heterospecific pollen deposition in Delphinium barbeyi: Linking stigmatic pollen loads to reproductive output in the field. Ann. Bot. 117, 341–347. https://doi.org/10.1093/aob/mcv175 (2016).
Google Scholar
Richardson, R. T. et al. Quantitative multi-locus metabarcoding and waggle dance interpretation reveal honey bee spring foraging patterns in Midwest agroecosystems. Mol. Ecol. 28, 686–697. https://doi.org/10.1111/mec.14975 (2019).
Google Scholar
Peel, N. et al. Semi-quantitative characterisation of mixed pollen samples using MinION sequencing and Reverse Metagenomics (RevMet). Methods Ecol. Evol. 10, 1690–1701. https://doi.org/10.1111/2041-210x.13265 (2019).
Google Scholar
Baksay, S. et al. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Sci. Rep. 10, 4202. https://doi.org/10.1038/s41598-020-61198-6 (2020).
Google Scholar
Washburn, J. D. et al. Genome-guided phylo-transcriptomic methods and the nuclear phylogentic tree of the paniceae grasses. Sci. Rep. 7, 13528. https://doi.org/10.1038/s41598-017-13236-z (2017).
Google Scholar
Piñeiro Fernández, L. et al. A Phylogenomic analysis of the floral transcriptomes of sexually deceptive and rewarding European Orchids, Ophrys and Gymnadenia. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01553 (2019).
Google Scholar
Pawelkowicz, M. et al. Comparative transcriptome analysis reveals new molecular pathways for cucumber genes related to sex determination. Plant Reprod. 32, 193–216. https://doi.org/10.1007/s00497-019-00362-z (2019).
Google Scholar
Li, X. et al. Comparative transcriptomic analysis provides insight into the domestication and improvement of pear (P. pyrifolia) fruit. Plant Physiol. 180, 435–452. https://doi.org/10.1104/pp.18.01322 (2019).
Google Scholar
Sassa, H., Kakui, H. & Minamikawa, M. Pollen-expressed F-box gene family and mechanism of S-RNase-based gametophytic self-incompatibility (GSI) in Rosaceae. Sex Plant Reprod. 23, 39–43. https://doi.org/10.1007/s00497-009-0111-6 (2010).
Google Scholar
Ramírez, F. & Davenport, T. L. Apple pollination: A review. Sci. Hortic. 162, 188–203. https://doi.org/10.1016/j.scienta.2013.08.007 (2013).
Google Scholar
Gu, C., Wang, L., Korban, S. S. & Han, Y. Identification and characterization of S-RNasegenes andS-genotypes in Prunus and Malus species. Can. J. Plant Sci. 95, 213–225. https://doi.org/10.4141/cjps-2014-254 (2015).
Google Scholar
Sassa, H. Molecular mechanism of the S-RNase-based gametophytic self-incompatibility in fruit trees of Rosaceae. Breed. Sci. 66, 116–121. https://doi.org/10.1270/jsbbs.66.116 (2016).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
Google Scholar
Andrews, S. (Babraham, UK, 2010).
Daccord, N. et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 49, 1099–1106. https://doi.org/10.1038/ng.3886 (2017).
Google Scholar
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360. https://doi.org/10.1038/nmeth.3317 (2015).
Google Scholar
Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667. https://doi.org/10.1038/nprot.2016.095 (2016).
Google Scholar
Williams, C. R., Baccarella, A., Parrish, J. Z. & Kim, C. C. Trimming of sequence reads alters RNA-Seq gene expression estimates. BMC Bioinform. 17, 103. https://doi.org/10.1186/s12859-016-0956-2 (2016).
Google Scholar
Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13. https://doi.org/10.1186/s13059-016-0881-8 (2016).
Google Scholar
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295. https://doi.org/10.1038/nbt.3122 (2015).
Google Scholar
Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257. https://doi.org/10.1038/ncomms11257 (2016).
Google Scholar
Ballgown: Flexible, Isoform-Level Differential Expression Analysis v. 2.20.0. (Bioconductor, 2020).
Tello, D. et al. NGSEP3: Accurate variant calling across species and sequencing protocols. Bioinformatics 35, 4716–4723. https://doi.org/10.1093/bioinformatics/btz275 (2019).
Google Scholar
Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267. https://doi.org/10.1093/molbev/msj030 (2006).
Google Scholar
Milne, I. et al. Flapjack–graphical genotype visualization. Bioinformatics 26, 3133–3134. https://doi.org/10.1093/bioinformatics/btq580 (2010).
Google Scholar
Duitama, J. et al. An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Res. 42, e44. https://doi.org/10.1093/nar/gkt1381 (2014).
Google Scholar
Source: Ecology - nature.com