in

Increasing availability of palatable prey induces predator-dependence and increases predation on unpalatable prey

  • 1.

    Elton, C. S. Animal Ecology (Sidgwick and Jackson, 1927).

    Google Scholar 

  • 2.

    Curio, E. The Ethology of Predation (Springer, 1976).

    Google Scholar 

  • 3.

    Stephens, D. W., Brown, J. S. & Ydenberg, R. C. Foraging: Behavior and Ecology (The University of Chicago Press, 2007).

    Google Scholar 

  • 4.

    Holling, C. S. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959).

    Article 

    Google Scholar 

  • 5.

    Hassell, M. P. & Varley, G. C. New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137 (1969).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 6.

    Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975).

    Article 

    Google Scholar 

  • 7.

    DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for tropic interaction. Ecology 56, 881–892 (1975).

    Article 

    Google Scholar 

  • 8.

    Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton University Press, 1986).

    Google Scholar 

  • 9.

    Murdoch, W. W., Avery, S. & Smyth, M. E. B. Switching in predatory fish. Ecology 56, 1094–1105 (1975).

    Article 

    Google Scholar 

  • 10.

    Akre, B. G. & Johnson, D. M. Switching and sigmoid functional response curves by damselfly naiads with alternative prey available. J. Anim. Ecol. 48, 703–720 (1979).

    Article 

    Google Scholar 

  • 11.

    Benhadi-Marín, J., Pereira, J. A., Sousa, J. P. & Santos, S. A. P. Functional responses of three guilds of spiders: comparing single- and multiprey approaches. Ann. Appl. Biol. 175, 202–214 (2019).

    Article 

    Google Scholar 

  • 12.

    Tschanz, B., Bersier, L. F. & Bacher, S. Functional responses: a question of alternative prey and predator density. Ecology 88, 1300–1308 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Sih, A. & Christensen, B. Optimal diet theory: when does it work, and when and why does it fail?. Anim. Behav. 61, 379–390 (2001).

    Article 

    Google Scholar 

  • 14.

    Nakano, S., Fausch, K. D. & Kitano, S. Flexible niche partitioning via a foraging mode shift: a proposed mechanism for coexistence in stream-dwelling charrs. J. Anim. Ecol. 68, 1079–1092 (1999).

    Article 

    Google Scholar 

  • 15.

    Kullberg, C. Strategy of the Pygmy Owl while hunting avian and mammalian prey. Ornis Fenn. 72, 72–78 (1995).

    Google Scholar 

  • 16.

    Oaten, A. & Murdoch, W. W. Switching, functional response, and stability in predator-prey systems. Am. Nat. 109, 299–318 (1975).

    Article 

    Google Scholar 

  • 17.

    Abrams, P. A. The adaptive dynamics of consumer choice. Am. Nat. 153, 83–97 (1999).

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Abrams, P. A. & Kawecki, T. J. Adaptive host preference and the dynamics of host–parasitoid interactions. Theor. Popul. Biol. 56, 307–324 (1999).

    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 19.

    van Baleen, M., Krivan, V., van Rijn, P. & Sabelis, M. Alternative food, switching predators and the persistence of predator-prey systems. Am. Nat. 157, 512–524 (2001).

    Article 

    Google Scholar 

  • 20.

    Formanowicz, D. R. & Bradley, P. J. Fluctuations in prey density: effects on the foraging tactics of scolopendrid centipedes. Anim. Behav. 35, 453–461 (1987).

    Article 

    Google Scholar 

  • 21.

    Hirvonen, H. Shifts in foraging tactics of larval damselflies: effects of prey density. Oikos 86, 443–452 (1999).

    Article 

    Google Scholar 

  • 22.

    Hassell, M. P. The Dynamics of Arthropod Predator–Prey Systems (Princeton University Press, 1978).

    Google Scholar 

  • 23.

    Arditi, R. & Akçakaya, H. R. Underestimation of mutual interference of predators. Oecologia 83, 358–361 (1990).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 24.

    Abrams, P. A. & Ginzburg, L. R. The nature of predation: prey dependent, ratio dependent or neither?. Trends Ecol. Evol. 15, 337–341 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Arditi, R. & Ginzburg, L. R. How Species Interact: Altering the Standard View of Trophic Ecology (Oxford University Press, 2012).

    Google Scholar 

  • 26.

    Chan, K. et al. Improving the assessment of predator functional responses by considering alternate prey and predator interactions. Ecology 98, 1787–1796 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Tyutyunov, Y. V. & Titova, L. I. From Lotka-Volterra to Arditi-Ginzbug: 90 years of evolving trophic functions. Biol. Bull. Rev. 10, 167–185 (2020).

    Article 

    Google Scholar 

  • 28.

    Novak, M. & Stouffer, D. B. Systematic bias in studies of consumer functional responses. Ecol. Lett. 24, 580–593 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 29.

    Schenk, D., Bersier, L. F. & Bacher, S. An experimental test of the nature of predation: neither prey- nor ratio-dependent. J. Anim. Ecol. 74, 86–91 (2005).

    Article 

    Google Scholar 

  • 30.

    Hossie, T. J. & Murray, D. L. Spatial arrangement of prey affects the shape of ratio-dependent functional responses in strongly antagonistic predators. Ecology 97, 834–841 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Pulliam, H. R. On the theory of optimal diets. Am. Nat. 108, 59–74 (1974).

    Article 

    Google Scholar 

  • 32.

    Charnov, E. L. Optimal foraging: attack strategy of a mantid. Am. Nat. 110, 141–151 (1976).

    Article 

    Google Scholar 

  • 33.

    Baudrot, V., Perasso, A., Fritsch, C., Giraudoux, P. & Raoul, F. The adaptation of generalist predators’ diet in a multi-prey context: insights from new functional responses. Ecology 97, 1832–1841 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Palma, L., Beja, P., Pais, M. & Da Fonseca, L. C. Why do raptors take domestic prey? The case of Bonelli’s eagles and pigeons. J. Appl. Ecol. 43, 1075–1086 (2006).

    Article 

    Google Scholar 

  • 35.

    Hossie, T. J. & Murray, D. L. You can’t run but you can hide: refuge use in frog tadpoles elicits density-dependent predation by dragonfly larvae. Oecologia 163, 395–404 (2010).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 36.

    Hossie, T. J. & Murray, D. L. Assessing behavioural and morphological responses of frog tadpoles to temporal variability in predation risk. J. Zool. 288, 275–282 (2012).

    Article 

    Google Scholar 

  • 37.

    Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 541–554 (2001).

    Article 

    Google Scholar 

  • 38.

    Hossie, T. J., Landolt, K. & Murray, D. L. Determinants and co-expression of anti-predator responses in amphibian tadpoles: a meta-analysis. Oikos 126, 20. https://doi.org/10.1111/oik.03305 (2017).

    Article 

    Google Scholar 

  • 39.

    Relyea, R. A. The relationship between predation risk and antipredator responses in larval anurans. Ecology 82, 541–554 (2001).

    Article 

    Google Scholar 

  • 40.

    Shine, R. The ecological impact of invasive cane toads (Bufo marinus) in Australia. Quart. Rev. Biol. 85, 253–291 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    Üveges, B. et al. Age- and environment-dependent changes in chemical defences of larval and post-metamorphic toads. BMC Evol. Biol. 17, 137 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Jeschke, J. M. Density-dependent effect of prey defences and predator offences. J. Theor. Biol. 242, 900–907 (2006).

    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 43.

    Holt, R. D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).

    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Chaneton, E. J. & Bonsall, M. B. Enemy-mediated apparent competition: empirical patterns and the evidence. Oikos 88, 380–394 (2000).

    Article 

    Google Scholar 

  • 45.

    Holt, R. D. & Kotler, B. P. Short-term apparent competition. Am. Nat. 130, 412–430 (1987).

    Article 

    Google Scholar 

  • 46.

    Abrams, P. A. Effect of increased productivity on the abundances of trophic levels. Am. Nat. 141, 351–371 (1993).

    Article 

    Google Scholar 

  • 47.

    Jara, F. G. & Perotti, M. G. Toad tadpole responses to predator risk: ontogenetic change between constitutive and inducible defenses. J. Herpetol. 43, 82–88 (2009).

    Article 

    Google Scholar 

  • 48.

    Murdoch, W. W. Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39, 335–354 (1969).

    Article 

    Google Scholar 

  • 49.

    Chesson, P. L. Variable predators and switching behavior. Theor. Popul. Biol. 26, 1–26 (1984).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 50.

    Gende, S. M., Quinn, T. P. & Willson, M. F. Consumption choice by bears feeding on salmon. Oecologia 127, 372–382 (2001).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 51.

    Skelhorn, J. & Rowe, C. Predator avoidance learning of prey with secreted or stored defences and the evolution of insect defences. Anim. Behav. 72, 827–834 (2006).

    Article 

    Google Scholar 

  • 52.

    Vucetich, J. A., Vucetich, L. M. & Peterson, R. O. The causes and consequences of partial prey consumption by wolves preying on moose. Behav. Ecol. Sociobiol. 66, 295–303 (2012).

    Article 

    Google Scholar 

  • 53.

    Sih, A. Optimal foraging: partial consumption of prey. Am. Nat. 116, 281–290 (1980).

    Article 

    Google Scholar 

  • 54.

    Lucas, J. R. & Grafen, A. Partial prey consumption by ambush predators. Theor. Popul. Biol. 113, 455–473 (1985).

    MathSciNet 
    Article 

    Google Scholar 

  • 55.

    Halliday, D. C. et al. Cane toad toxicity: an assessment of extracts from early developmental stages and adult tissues using MDCK cell culture. Toxicon 53, 385–391 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Toledo, R. C. & Jared, C. Cutaneous granular glands and amphibian venoms. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 111, 1–29 (1995).

    Article 

    Google Scholar 

  • 57.

    Parrott, M. L., Doody, J. S., McHenry, C. & Clulow, S. Eat your heart out: choice and handling of novel toxic prey by predatory water rats. Aust. Mammal. 42, 235–239 (2019).

    Article 

    Google Scholar 

  • 58.

    Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry 2nd edn. (Oxford University Press, 2018).

    Google Scholar 

  • 59.

    Sherratt, T. N. The optimal strategy for sampling unfamiliar prey. Evolution 65, 2114–2025 (2011).

    Article 

    Google Scholar 

  • 60.

    Skelhorn, J. & Rowe, C. Predators’ toxin burdens influence their strategic decisions to eat toxic prey. Curr. Biol. 17, 1479–1483 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Barnett, C. A., Skelhorn, J., Bateson, M. & Rowe, C. Educated predators make strategic decisions to eat defended prey according to their toxin content. Behav. Ecol. 23, 418–424 (2012).

    Article 

    Google Scholar 

  • 62.

    Nonacs, P. Foraging in a dynamic mimicry complex. Am. Nat. 126, 165–180 (1985).

    Article 

    Google Scholar 

  • 63.

    Sherratt, T. N. State-dependent risk-taking by predators in systems with defended prey. Oikos 103, 93–100 (2003).

    Article 

    Google Scholar 

  • 64.

    Jeschke, J. M., Kopp, M. & Tollrian, R. Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biol. Rev. 79, 337–349 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 65.

    Wilbur, H. M. Density-dependent aspects of growth and metamorphosis in Bufo americanus. Ecology 58, 196–200 (1977).

    Article 

    Google Scholar 

  • 66.

    Loman, J. Density regulation in tadpoles of Rana temporaria: a full pond experiment. Ecology 85, 1611–1618 (2004).

    Article 

    Google Scholar 

  • 67.

    Yagi, K. T. & Green, D. M. Mechanisms of denity-dependent growth and survival in tadpoles of Fowler’s Toad, Anaxyrus fowleri: volume vs. abundance. Copeia 104, 942–951 (2016).

    Article 

    Google Scholar 

  • 68.

    Marshal, J. P. & Boutin, S. Power analysis of wolf-moose functional responses. J. Wild. Manag. 63, 396–402 (1999).

    Article 

    Google Scholar 

  • 69.

    Novak, M. & Stouffer, D. B. Systematic bias of consumer functional responses. Ecol. Lett. 24, 580–593 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 70.

    Hossie, T. J. & Murray, D. L. Effects of structural refuge and density on foraging behaviour and mortality of hungry tadpoles subject to predation risk. Ethology 117, 777–785 (2011).

    Article 

    Google Scholar 

  • 71.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).

    Google Scholar 

  • 72.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).


  • Source: Ecology - nature.com

    Study reveals plunge in lithium-ion battery costs

    Toxicity of the insecticide sulfoxaflor alone and in combination with the fungicide fluxapyroxad in three bee species