Preston, D. et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res. 168, 1–64 (2007).
Google Scholar
Neriishi, K. et al. Postoperative cataract cases among atomic bomb survivors: Radiation dose response and threshold. Radiat. Res. 168, 404–408 (2007).
Google Scholar
Sasaki, H., Wong, F. L., Yamada, M. & Kodama, K. The effects of aging and radiation exposure on blood pressure levels of atomic bomb survivors. J. Clin. Epidemiol. 55, 974–981 (2002).
Google Scholar
Shimizu, Y. et al. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. BMJ 340, b5349 (2010).
Google Scholar
Yamada, M., Naito, K., Kasagi, F., Masunari, N. & Suzuki, G. Prevalence of atherosclerosis in relation to atomic bomb radiation exposure: An RERF Adult Health Study. Int. J. Radiat. Biol. 81, 821–826 (2005).
Google Scholar
Hayashi, T. et al. Evaluation of systemic markers of inflammation in atomic-bomb survivors with special reference to radiation and age effects. FASEB J. 26, 4765–4773 (2012).
Google Scholar
Sun, L. et al. Dose-dependent decrease in anti-oxidant capacity of whole blood after irradiation: A novel potential marker for biodosimetry. Sci. Rep. 8, 1–8 (2018).
Zitka, O. et al. Redox status expressed as GSH: GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol. Lett. 4, 1247–1253 (2012).
Google Scholar
Chen, J., Small-Howard, A., Yin, A. & Berry, M. J. The responses of Ht22 cells to oxidative stress induced by buthionine sulfoximine (BSO). BMC Neurosci. 6, 1–8 (2005).
Google Scholar
Díaz-Hung, M.-L. et al. Transient glutathione depletion in the substantia nigra compacta is associated with neuroinflammation in rats. Neuroscience 335, 207–220 (2016).
Google Scholar
Mitchell, J. & Russo, A. The role of glutathione in radiation and drug induced cytotoxicity. Br. J. Cancer Suppl. 8, 96 (1987).
Google Scholar
Preston, D. L., Shimizu, Y., Pierce, D. A., Suyama, A. & Mabuchi, K. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat. Res. 160, 381–407. https://doi.org/10.1667/rr3049 (2003).
Yamada, M., Wong, F. L., Fujiwara, S., Akahoshi, M. & Suzuki, G. Noncancer disease incidence in atomic bomb survivors, 1958–1998. Radiat. Res. 161, 622–632. https://doi.org/10.1667/rr3183 (2004).
Google Scholar
Stewart, F. et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann. ICRP 41, 1–322 (2012).
Google Scholar
Stewart, F. A. et al. ICRP PUBLICATION 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs: Threshold doses for tissue reactions in a radiation protection context. Ann. ICRP 41, 1–322. https://doi.org/10.1016/j.icrp.2012.02.001 (2012).
Google Scholar
Carey, J. W., Pinarci, E. Y., Penugonda, S., Karacal, H. & Ercal, N. In vivo inhibition of l-buthionine-(S, R)-sulfoximine-induced cataracts by a novel antioxidant, N-acetylcysteine amide. Free Radical Biol. Med. 50, 722–729 (2011).
Google Scholar
Rodríguez-Gómez, I. et al. Role of sympathetic tone in BSO-induced hypertension in mice. Am. J. Hypertens. 23, 882–888 (2010).
Google Scholar
Rosenblat, M., Coleman, R. & Aviram, M. Increased macrophage glutathione content reduces cell-mediated oxidation of LDL and atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 163, 17–28 (2002).
Google Scholar
Rajasekaran, N. S., Sathyanarayanan, S., Devaraj, N. S. & Devaraj, H. Chronic depletion of glutathione (GSH) and minimal modification of LDL in vivo: its prevention by glutathione mono ester (GME) therapy. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 1741, 103–112 (2005).
Gokce, G. et al. Glutathione depletion by buthionine sulfoximine induces oxidative damage to DNA in organs of rabbits in vivo. Biochemistry 48, 4980–4987 (2009).
Google Scholar
Richie, J. P., Komninou, D. & Albino, A. P. Induction of colon tumorigenesis by glutathione depletion in p53-knock-out mice. Int. J. Oncol. 30, 1539–1543 (2007).
Google Scholar
Beatty, A. et al. Metabolite profiling reveals the glutathione biosynthetic pathway as a therapeutic target in triple-negative breast cancer. Mol. Cancer Ther. 17, 264–275 (2018).
Google Scholar
Otsuki, Y. et al. Vasodilator oxyfedrine inhibits aldehyde metabolism and thereby sensitizes cancer cells to xCT-targeted therapy. Cancer Sci. 111, 127–136 (2020).
Google Scholar
Rivina, L., Davoren, M. J. & Schiestl, R. H. Mouse models for radiation-induced cancers. Mutagenesis 31, 491–509. https://doi.org/10.1093/mutage/gew019 (2016).
Google Scholar
Neriishi, K., Nakashima, E. & Delongchamp, R. Persistent subclinical inflammation among A-bomb survivors. Int. J. Radiat. Biol. 77, 475–482 (2001).
Google Scholar
Wong, F. L., Yamada, M., Sasaki, H., Kodama, K. & Hosoda, Y. Effects of radiation on the longitudinal trends of total serum cholesterol levels in the atomic bomb survivors. Radiat. Res. 151, 736–746 (1999).
Google Scholar
Kurokawa, Y. The late effects of atomic bomb injuries in Hiroshima and Nagasaki. Nagoya J. Med. Sci. 82, 187–202 (1955).
Chua, H. L. et al. Long-term hematopoietic stem cell damage in a murine model of the hematopoietic syndrome of the acute radiation syndrome. Health Phys. 103, 356–366. https://doi.org/10.1097/HP.0b013e3182666d6f (2012).
Google Scholar
Robbins, M. E. & Zhao, W. Chronic oxidative stress and radiation-induced late normal tissue injury: A review. Int. J. Radiat. Biol. 80, 251–259. https://doi.org/10.1080/09553000410001692726 (2004).
Google Scholar
Robbins, M. E., Zhao, W., Davis, C. S., Toyokuni, S. & Bonsib, S. M. Radiation-induced kidney injury: A role for chronic oxidative stress?. Micron 33, 133–141 (2002).
Google Scholar
Kang, S. K. et al. Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury. Int. J. Radiat. Oncol. Biol. Phys. 57, 1056–1066. https://doi.org/10.1016/s0360-3016(03)01369-5 (2003).
Google Scholar
Yin, Z., Yang, G., Deng, S. & Wang, Q. Oxidative stress levels and dynamic changes in mitochondrial gene expression in a radiation-induced lung injury model. J. Radiat. Res. 60, 204–214 (2019).
Google Scholar
Volkova, P. Y., Geras’kin, S. A. & Kazakova, E. A. Radiation exposure in the remote period after the Chernobyl accident caused oxidative stress and genetic effects in Scots pine populations. Sci. Rep. 7, 1–9 (2017).
Urushihara, Y. et al. Analysis of plasma protein concentrations and enzyme activities in cattle within the ex-evacuation zone of the Fukushima Daiichi nuclear plant accident. PLoS ONE 11, e0155069 (2016).
Google Scholar
Malekirad, A. A. et al. Oxidative stress in radiology staff. Environ. Toxicol. Pharmacol. 20, 215–218 (2005).
Google Scholar
Takabatake, M. et al. Differential effect of parity on rat mammary carcinogenesis after pre- or post-pubertal exposure to radiation. Sci Rep 8, 14325. https://doi.org/10.1038/s41598-018-32406-1 (2018).
Google Scholar
Narendran, N., Luzhna, L. & Kovalchuk, O. Sex difference of radiation response in occupational and accidental exposure. Front. Genet. 10, 260. https://doi.org/10.3389/fgene.2019.00260 (2019).
Google Scholar
Champion, C. J. & Xu, J. Redox state affects fecundity and insecticide susceptibility in Anopheles gambiae. Sci. Rep. 8, 1–11 (2018).
Google Scholar
Source: Ecology - nature.com