in

Native Burmese pythons exhibit site fidelity and preference for aquatic habitats in an agricultural mosaic

  • 1.

    Gurarie, E., Andrews, R. D. & Laidre, K. L. A novel method for identifying behavioural changes in animal movement data. Ecol. Lett. 12, 395–408 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Dulau, V. et al. Continuous movement behavior of humpback whales during the breeding season in the southwest Indian Ocean: on the road again!. Mov. Ecol. 5, 11 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Glaudas, X. & Alexander, G. J. Food supplementation affects the foraging ecology of a low-energy, ambush-foraging snake. Behav. Ecol. Sociobiol. 71, 5 (2017).

    Article 

    Google Scholar 

  • 5.

    Moorter, B. V., Rolandsen, C. M., Basille, M. & Gaillard, J.-M. Movement is the glue connecting home ranges and habitat selection. J. Anim. Ecol. 85, 21–31 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Schneider, A. et al. A new urban landscape in East-Southeast Asia, 2000–2010. Environ. Res. Lett. 10, 034002 (2015).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Böhm, M. et al. Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size—extinction risk correlates in squamate reptiles. Glob. Ecol. Biogeogr. 25, 391–405 (2016).

    Article 

    Google Scholar 

  • 10.

    Ditchkoff, S. S., Saalfeld, S. T. & Gibson, C. J. Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosyst. 9, 5–12 (2006).

    Article 

    Google Scholar 

  • 11.

    Shamoon, H., Maor, R., Saltz, D. & Dayan, T. Increased mammal nocturnality in agricultural landscapes results in fragmentation due to cascading effects. Biol. Conserv. 226, 32–41 (2018).

    Article 

    Google Scholar 

  • 12.

    Shine, R. & Fitzgerald, M. Large snakes in a mosaic rural landscape: the ecology of carpet pythons Morelia spilota (Serpentes: Pythonidae) in coastal eastern Australia. Large Snakes Mosaic Rural Landsc. Ecol. Carpet Pythons Morelia Spilota Serpentes Pythonidae Coast. East. Aust. 76, 113–122 (1996).

  • 13.

    Charles, K. E. & Linklater, W. L. Dietary breadth as a predictor of potential native avian–human conflict in urban landscapes. Wildl. Res. 40, 482 (2013).

    Article 

    Google Scholar 

  • 14.

    Soulsbury, C. D. & White, P. C. L. Human–wildlife interactions in urban areas: a review of conflicts, benefits and opportunities. Wildl. Res. 42, 541 (2015).

    Article 

    Google Scholar 

  • 15.

    Gibbon, J. W. et al. The global decline of reptiles Déjà Vu Amphibians. BioScience 50, 653 (2000).

    Article 

    Google Scholar 

  • 16.

    Todd, B., Willson, J. & Gibbons, J. The Global Status of Reptiles and Causes of Their Decline. in Ecotoxicology of Amphibians and Reptiles, Second Edition (eds. Sparling, D., Linder, G., Bishop, C. & Krest, S.) 47–67 (CRC Press, 2010). https://doi.org/10.1201/EBK1420064162-c3.

  • 17.

    Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).

    Article 

    Google Scholar 

  • 18.

    Barker, D. G. & Barker, T. M. The distribution of the burmese python, python molurus bivittatus. Bull. Chic. Herpetol. Soc. 43, 33–38 (2008).

    Google Scholar 

  • 19.

    Rahman, S. C., Jenkins, C. L., Trageser, S. J. & Rashid, S. M. A. Radio-telemetry study of Burmese python (Python molurus bivittatus) and elongated tortoise (Indotestudo elongata) in Lawachara National Park, Bangladesh: a prelimiary observation. Khan MAR Ali MS Feeroz MM Naser MN Ed. Festschr. 50th Anniversary IUCN Red List Threat. Species 54–62 (2014).

  • 20.

    Bhupathy, S., Ramesh, C. & Bahuguna, A. Feeding habits of Indian rock pythons in Keoladeo National Park, Bharatpur India. Herpetol. J. 24, 59–64 (2014).

    Google Scholar 

  • 21.

    Shine, R., Harlow, P. S., Keogh, J. S. & Boeadi. The influence of sex and body size on food habits of a giant tropical snake, Python reticulatus. Funct. Ecol. 12, 248–258 (1998).

  • 22.

    Dorcas, M. E. et al. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl. Acad. Sci. 109, 2418–2422 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Dove, C. J., Snow, R. W., Rochford, M. R. & Mazzotti, F. J. Birds Consumed by the Invasive Burmese Python (Python molurus bivittatus) in Everglades National Park, Florida, USA. Wilson J. Ornithol. 123, 126–131 (2011).

    Article 

    Google Scholar 

  • 24.

    Stuart, B. et al. Python bivittatus (errata version published in 2019). https://doi.org/10.2305/IUCN.UK.2012-1.RLTS.T193451A151341916.en. (2019).

  • 25.

    Goodyear, N. C. Python molurus bivittatus (Burmese python) Movements. Herpetol. Rev. 25, 71–72 (1994).

    Google Scholar 

  • 26.

    You, C.-W. et al. Return of the pythons: first formal records, with a special note on recovery of the Burmese python in the demilitarized Kinmen islands. Zool. Stud. 52, 8 (2013).

    Article 

    Google Scholar 

  • 27.

    Miranda, E. B. P., Ribeiro, R. P. & Strüssmann, C. The ecology of human-anaconda conflict: a study using internet videos. Trop. Conserv. Sci. 9, 43–77 (2016).

    Article 

    Google Scholar 

  • 28.

    Nóbrega Alves, R. R. et al. A zoological catalogue of hunted reptiles in the semiarid region of Brazil. J. Ethnobiol. Ethnomed. 8, 27 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Orzechowski, S. C. M., Frederick, P. C., Dorazio, R. M. & Hunter, M. E. Environmental DNA sampling reveals high occupancy rates of invasive Burmese pythons at wading bird breeding aggregations in the central Everglades. PLoS ONE 14, e0213943 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Marshall, B. M. et al. No room to roam: King Cobras reduce movement in agriculture. Mov. Ecol. 8, 33 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Reed, R. N. & Rodda, G. H. Giant constrictors: biological and management profiles and an establishment risk assessment for nine large species of pythons, anacondas, and the boa constrictor: U.S. Geological Survey Open-File Report. (2009).

  • 32.

    Reinert, H. K. & Cundall, D. An Improved Surgical Implantation Method for Radio-Tracking Snakes. Copeia 1982, 702–705 (1982).

    Article 

    Google Scholar 

  • 33.

    R Core Team. R: a language and environment for statistical computing.

  • 34.

    R Studio Team. RStudio: integrated development environment for R.

  • 35.

    Silva, I., Crane, M., Suwanwaree, P., Strine, C. & Goode, M. Using dynamic Brownian Bridge Movement Models to identify home range size and movement patterns in king cobras. PLoS ONE 13, e0203449 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Silva, I., Crane, M., Marshall, B. M. & Strine, C. T. Reptiles on the wrong track? Moving beyond traditional estimators with dynamic Brownian Bridge Movement Models. Mov. Ecol. 8, 43 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Kranstauber, B., Kays, R., LaPoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 38.

    Kranstauber, B., Smolla, M. & Scharf, A. K. move: Visualizing and Analyzing Animal Track Data. (2020).

  • 39.

    Calenge, C. The package adehabitat for the R software: tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 1035 (2006).

    Article 

    Google Scholar 

  • 40.

    Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). (2020).

  • 41.

    Bracis, C., Bildstein, K. L. & Mueller, T. Revisitation analysis uncovers spatio-temporal patterns in animal movement data. Ecography https://doi.org/10.1111/ecog.03618 (2018).

    Article 

    Google Scholar 

  • 42.

    Berger-Tal, O. & Bar-David, S. Recursive movement patterns: review and synthesis across species. Ecosphere 6, art149 (2015).

  • 43.

    Avgar, T., Potts, J. R., Lewis, M. A. & Boyce, M. S. Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods Ecol. Evol. 7, 619–630 (2016).

    Article 

    Google Scholar 

  • 44.

    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools ( amt ): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Marshall, B. M. et al. Data set and code supporting Marshall et al. 2020. No room to roam: King Cobras reduce movement in agriculture. (Version 1.1) . (2020).

  • 46.

    Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Muff, S., Signer, J. & Fieberg, J. Accounting for individual-specific variation in habitat-selection studies: efficient estimation of mixed-effects models using Bayesian or frequentist computation. J. Anim. Ecol. 89, 80–92 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 48.

    Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319–392 (2009).

  • 49.

    Hart, K. M. et al. Home range, habitat use, and movement patterns of non-native Burmese pythons in Everglades National Park, Florida, USA. Anim. Biotelemetry 3, 8 (2015).

    Article 

    Google Scholar 

  • 50.

    Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Rettie, W. J. & Messier, F. Range use and movement rates of woodland caribou in Saskatchewan. Can. J. Zool. 79, 1933–1940 (2001).

    Article 

    Google Scholar 

  • 52.

    Doherty, T. S., Fist, C. N. & Driscoll, D. A. Animal movement varies with resource availability, landscape configuration and body size: a conceptual model and empirical example. Landsc. Ecol. 34, 603–614 (2019).

    Article 

    Google Scholar 

  • 53.

    Young, L. I., Dickman, C. R., Addison, J. & Pavey, C. R. Spatial ecology and shelter resources of a threatened desert rodent (Pseudomys australis) in refuge habitat. J. Mammal. 98, 1604–1614 (2017).

    Article 

    Google Scholar 

  • 54.

    Ross, C. T. & Winterhalder, B. Sit-and-wait versus active-search hunting: A behavioral ecological model of optimal search mode. J. Theor. Biol. 387, 76–87 (2015).

    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 55.

    Krysko, K., Nifong, J., Mazzotti, F., Snow, R. & Enge, K. Reproduction of the Burmese python (Python molurus bivittatus) in southern Florida. Appl. Herpetol. 5, 93–95 (2008).

    Article 

    Google Scholar 

  • 56.

    Smith, B. J. et al. Betrayal: radio-tagged Burmese pythons reveal locations of conspecifics in Everglades National Park. Biol. Invasions 18, 3239–3250 (2016).

    Article 

    Google Scholar 

  • 57.

    Hunter, M. E. et al. Environmental DNA (eDNA) Sampling Improves Occurrence and Detection Estimates of Invasive Burmese Pythons. PLoS ONE 10, e0121655 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 58.

    Frishkoff, L. O., Hadly, E. A. & Daily, G. C. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Change Biol. 21, 3901–3916 (2015).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Fujioka, M., Don Lee, S. & Kurechi, M. Bird use of Rice Fields in Korea and Japan. Waterbirds 33, 8 (2010).

    Article 

    Google Scholar 

  • 60.

    Marshall, B. M. et al. Space fit for a king: spatial ecology of king cobras (Ophiophagus hannah) in Sakaerat Biosphere Reserve, Northeastern Thailand. Amphib.-Reptil. 40, 163–178 (2019).

    Article 

    Google Scholar 

  • 61.

    Barua, M., Bhagwat, S. A. & Jadhav, S. The hidden dimensions of human–wildlife conflict: Health impacts, opportunity and transaction costs. Biol. Conserv. 157, 309–316 (2013).

    Article 

    Google Scholar 

  • 62.

    Crane, M. et al. A report of a Malayan Krait Snake Bungarus Candidus Mortality as By-Catch in a Local Fish Trap from Nakhon Ratchasima Thailand. Trop. Conserv. Sci. 9, 313–320 (2016).

    Article 

    Google Scholar 

  • 63.

    Marshall, B. M. et al. Hits close to home: repeated persecution of King Cobras ( Ophiophagus hannah ) in Northeastern Thailand. Trop. Conserv. Sci. 11, 194008291881840 (2018).

    Article 

    Google Scholar 

  • 64.

    Webster, M. M. & Rutz, C. How strange are your study animals?. Nature 582, 337–340 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Mutascio, H. E., Pittman, S. E., Zollner, P. A. & D’Acunto, L. E. Modeling relative habitat suitability of southern Florida for invasive Burmese pythons (Python molurus bivittatus). Landsc. Ecol. 33, 257–274 (2018).

    Article 

    Google Scholar 

  • 66.

    Steen, D. A. Snakes in the grass: secretive natural histories defy both conventional and progressive statistics. Herpetol. Conserv. Biol. 5, 183 (2010).

    Google Scholar 


  • Source: Ecology - nature.com

    Cooling homes without warming the planet

    Powering the energy transition with better storage