Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).
Google Scholar
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
Google Scholar
Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).
Google Scholar
Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849–864 (2018).
Google Scholar
Meakem, V. et al. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytol. 219, 947–958 (2017).
Google Scholar
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Google Scholar
McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).
Google Scholar
Camac, J. S. et al. Partitioning mortality into growth-dependent and growth-independent hazards across 203 tropical tree species. Proc. Natl Acad. Sci. USA 115, 12459 (2018).
Google Scholar
Condit, R., Hubbell, S. P. & Foster, R. B. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol. Monogr. 65, 419–439 (1995).
Google Scholar
McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).
Google Scholar
Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).
Google Scholar
Forrester, D. I. Does individual-tree biomass growth increase continuously with tree size? For. Ecol. Manag. 481, 118717 (2021).
Google Scholar
Sheil, D. et al. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Funct. Ecol. 31, 568–581 (2017).
Google Scholar
Condit, R., Pérez, R., Lao, S., Aguilar, S. & Hubbell, S. P. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. For. Ecosyst. 4, 17 (2017).
Google Scholar
McMahon, S. M., Arellano, G. & Davies, S. J. The importance and challenges of detecting changes in forest mortality rates. Ecosphere 10, e02615 (2019).
Google Scholar
Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388 (2019).
Google Scholar
Parlato, B., Gora, E. M. & Yanoviak, S. P. Lightning damage facilitates beetle colonization of tropical trees. Ann. Entomol. Soc. Am. 113, 447–451 (2020).
Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556 (1987).
Google Scholar
Gale, N. & Hall, P. Factors determining the modes of tree death in three Bornean rain forests. J. Veg. Sci. 12, 337–348 (2001).
Google Scholar
Fontes, C. G., Chambers, J. Q. & Higuchi, N. Revealing the causes and temporal distribution of tree mortality in Central Amazonia. For. Ecol. Manag. 424, 177–183 (2018).
Google Scholar
de Toledo, J. J., Magnusson, W. E. & Castilho, C. V. Competition, exogenous disturbances and senescence shape tree size distribution in tropical forest: evidence from tree mode of death in Central Amazonia. J. Veg. Sci. 24, 651–663 (2013).
Google Scholar
Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).
Google Scholar
Yanoviak, S. P. et al. Lightning is a major cause of large tropical tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).
Google Scholar
Rifai, S. W. et al. Landscape-scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon. Ecol. Appl. 26, 2225–2237 (2016).
Google Scholar
McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).
Google Scholar
Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).
Google Scholar
Sperry, J. S. & Love, D. M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 207, 14–27 (2015).
Google Scholar
Roberts, J., Osvaldo, M. R. C. & De Aguiar, L. F. Stomatal and boundary-layer conductances in an Amazonian terra firme rain forest. J. Appl. Ecol. 27, 336–353 (1990).
Google Scholar
Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018).
Google Scholar
McGregor, I. R. et al. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytol. https://doi.org/10.1111/nph.16996 (2020).
Mencuccini, M. et al. Size-mediated ageing reduces vigour in trees. Ecol. Lett. 8, 1183–1190 (2005).
Google Scholar
McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).
Google Scholar
Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).
Google Scholar
Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).
Google Scholar
da Costa, A. C. L. et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187, 579–591 (2010).
Google Scholar
Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).
Google Scholar
Bartholomew, D. C. et al. Small tropical forest trees have a greater capacity to adjust carbon metabolism to long-term drought than large canopy trees. Plant Cell Environ. 43, 2380–2393 (2020).
Google Scholar
Fauset, S. et al. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett. 15, 1120–1129 (2012).
Google Scholar
Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C. & Davies, S. J. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98, 2538–2546 (2017).
Google Scholar
van der Meer, P. J. & Bongers, F. Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana. J. Ecol. 84, 19–29 (1996).
Google Scholar
Parker, G. G. in Forest canopies (eds Lowman, M. D. & Nadkarni, N. M.) 73–106 (Academic Press, 1995).
Terborgh, J., Huanca Nuñez, N., Feeley, K. & Beck, H. Gaps present a trade-off between dispersal and establishment that nourishes species diversity. Ecology 101, e02996 (2020).
Google Scholar
Ribeiro, G. H. P. M. et al. Mechanical vulnerability and resistance to snapping and uprooting for Central Amazon tree species. For. Ecol. Manag. 380, 1–10 (2016).
Google Scholar
Peterson, C. J. et al. Critical wind speeds suggest wind could be an important disturbance agent in Amazonian forests. Forestry 92, 444–459 (2019).
Google Scholar
Uriarte, M., Thompson, J. & Zimmerman, J. K. Hurricane María tripled stem breaks and doubled tree mortality relative to other major storms. Nat. Commun. 10, 1362 (2019).
Google Scholar
Silvério, D. V. et al. Fire, fragmentation, and windstorms: a recipe for tropical forest degradation. J. Ecol. 107, 656–667 (2019).
Google Scholar
van Wilgen, B. W., Biggs, H. C., Mare, N. & O’Regan, S. P. A fire history of the savanna ecosystems in the Kruger National Park, South Africa, between 1941 and 1996. S. Afr. J. Sci. 96, 167–178 (2000).
Tutin, C. E. G., White, L. J. T. & Mackanga-Missandzou, A. Lightning strike burns large forest tree in the Lope Reserve, Gabon. Glob. Ecol. Biogeog. Lett. 5, 36–41 (1996).
Google Scholar
Magnusson, W. E., Lima, A. P. & de Lima, O. Group lightning mortality of trees in a Neotropical forest. J. Trop. Ecol. 12, 899–903 (1996).
Google Scholar
Anderson, J. A. R. Observations on climatic damage in peat swamp forest in Sarawak. Commonw. Forestry Rev. 43, 145–158 (1964).
Gora, E. M., Burchfield, J. C., Muller-Landau, H. C., Bitzer, P. M. & Yanoviak, S. P. Pantropical geography of lightning-caused disturbance and its implications for tropical forests. Glob. Change Biol. 26, 5017–5026 (2020).
Google Scholar
Gora, E. M. et al. A mechanistic and empirically-supported lightning risk model for forest trees. J. Ecol. 108, 1956–1966 (2020).
Google Scholar
Alencar, A., Nepstad, D. & Diaz, M. C. V. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interact. 10, 1–17 (2009).
Google Scholar
Brando, P. M. et al. Droughts, wildfires, and forest carbon cycling: A pantropical synthesis. Annu. Rev. Earth Planet. Sci. 47, 555–581 (2019).
Google Scholar
Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).
Google Scholar
Kauffman, J. B. & Uhl, C. in Fire in the Tropical Biota. Ecological Studies (Analysis and Synthesis) Vol. 84 (ed. Goldammer, J. G.) (Springer, 1990).
Pfeiffer, M., Spessa, A. & Kaplan, J. O. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geosci. Model Dev. 6, 643–685 (2013).
Google Scholar
Nepstad, D. C. et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398, 505–508 (1999).
Google Scholar
Ray, D., Nepstad, D. & Moutinho, P. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 15, 1664–1678 (2005).
Google Scholar
Brando, P. M. et al. Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Glob. Change Biol. 18, 630–641 (2012).
Google Scholar
Barlow, J., Peres, C. A., Lagan, B. O. & Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 6, 6–8 (2003).
Google Scholar
Liebhold, A. M., MacDonald, W. L., Bergdahl, D. & Mastro, V. C. Invasion by Exotic Forest Pests: A Threat to Forest Ecosystems Forest Science Monographs 30 (Society of American Foresters, 1995).
McGregor, I. R. et al. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytol. https://doi.org/10.1111/nph.16996 (2020).
Gilbert, G. S. & Hubbell, S. P. Plant diseases and the conservation of tropical forests. BioScience 46, 98–106 (1996).
Google Scholar
Liu, X. et al. Dilution effect of plant diversity on infectious diseases: latitudinal trend and biological context dependence. Oikos 129, 457–465 (2020).
Google Scholar
Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124 (2019).
Google Scholar
Bell, T., Freckleton, R. P. & Lewis, O. T. Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol. Lett. 9, 569–574 (2006).
Google Scholar
Peters, H. A. Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecol. Lett. 6, 757–765 (2003).
Google Scholar
Gilbert, G. S., Foster, R. B. & Hubbell, S. P. Density and distance-to-adult effects of a canker disease of trees in a moist tropical forest. Oecologia 98, 100–108 (1994).
Google Scholar
Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).
Google Scholar
Suresh, H. S., Dattaraja, H. S. & Sukumar, R. Relationship between annual rainfall and tree mortality in a tropical dry forest: results of a 19-year study at Mudumalai, southern India. For. Ecol. Manag. 259, 762–769 (2010).
Google Scholar
Forrister, D. L., Endara, M.-J., Younkin, G. C., Coley, P. D. & Kursar, T. A. Herbivores as drivers of negative density dependence in tropical forest saplings. Science 363, 1213 (2019).
Google Scholar
Stephenson, N. L., Das, A. J., Ampersee, N. J., Bulaon, B. M. & Yee, J. L. Which trees die during drought? The key role of insect host-tree selection. J. Ecol. 107, 2383–2401 (2019).
Google Scholar
Wing, L. D. & Buss, I. O. Elephants and forests. Wildl. Monogr. 19, 3–92 (1970).
Berzaghi, F. et al. Carbon stocks in central African forests enhanced by elephant disturbance. Nat. Geosci. 12, 725–729 (2019).
Google Scholar
Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).
Google Scholar
Rüger, N. et al. Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 7, 1075–1084 (2018).
Google Scholar
Montgomery, R. A. & Chazdon, R. L. Forest structure, canopy architecture, and light transmittance in old-growth and secondgrowth tropical rain forests. Ecology 82, 2707–2718 (2001).
Google Scholar
Kobe, R. K. Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos 80, 226–233 (1997).
Google Scholar
Waring, B. G. & Powers, J. S. Overlooking what is underground: root:shoot ratios and coarse root allometric equations for tropical forests. For. Ecol. Manag. 385, 10–15 (2017).
Google Scholar
Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).
Google Scholar
Casper, B. B. & Jackson, R. B. Plant competition underground. Annu. Rev. Ecol. Syst. 28, 545–570 (1997).
Google Scholar
Coomes, D. A., Duncan, R. P., Allen, R. B. & Truscott, J. Disturbances prevent stem size–density distributions in natural forests from following scaling relationships. Ecol. Lett. 6, 980–989 (2003).
Google Scholar
Pillet, M. et al. Disentangling competitive vs. climatic drivers of tropical forest mortality. J. Ecol. 106, 1165–1179 (2018).
Google Scholar
Rozendaal, D. M. A. et al. Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology 101, e03052 (2020).
Google Scholar
Rodríguez-Ronderos, M. E., Bohrer, G., Sanchez-Azofeifa, A., Powers, J. S. & Schnitzer, S. A. Contribution of lianas to plant area index and canopy structure in a Panamanian forest. Ecology 97, 3271–3277 (2016).
Google Scholar
Schnitzer, S. A., Kuzee, M. E. & Bongers, F. Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J. Ecol. 93, 1115–1125 (2005).
Google Scholar
Putz, F. E. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65, 1713–1724 (1984).
Google Scholar
van der Heijden, G. M. F., Powers, J. S. & Schnitzer, S. A. Lianas reduce carbon accumulation and storage in tropical forests. Proc. Natl Acad. Sci. USA 112, 13267–13271 (2015).
Google Scholar
Visser, M. D. et al. Tree species vary widely in their tolerance for liana infestation: A case study of differential host response to generalist parasites. J. Ecol. 106, 781–794 (2018).
Google Scholar
Schnitzer, S. A. & Bongers, F. The ecology of lianas and their role in forests. Trends Ecol. Evol. 17, 223–230 (2002).
Google Scholar
García León, M. M., Martínez Izquierdo, L., Mello, F. N. A., Powers, J. S. & Schnitzer, S. A. Lianas reduce community-level canopy tree reproduction in a Panamanian forest. J. Ecol. 106, 737–745 (2018).
Google Scholar
Reis, S. M. et al. Causes and consequences of liana infestation in Southern Amazonia. J. Ecol. 108, 2184–2197 (2020).
Google Scholar
Sheil, D., Salim, A., Chave, J., Vanclay, J. & Hawthorne, W. D. Illumination–size relationships of 109 coexisting tropical forest tree species. J. Ecol. 94, 494–507 (2006).
Google Scholar
Myers, J. A. & Kitajima, K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecol. 95, 383–395 (2007).
Google Scholar
Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees—from what we can measure to what we want to know. New Phytol. 211, 386–403 (2016).
Google Scholar
Enquist, B. J., West, G. B., Charnov, E. L. & Brown, J. H. Allometric scaling of production and life-history variation in vascular plants. Nature 401, 907–911 (1999).
Google Scholar
Hubau, W. et al. The persistence of carbon in the African forest understory. Nat. Plants 5, 133–140 (2019).
Google Scholar
Chambers, J. Q., Higuchi, N. & Schimel, J. P. Ancient trees in Amazonia. Nature 391, 135–136 (1998).
Google Scholar
Poorter, L. & Kitajima, K. Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology 88, 1000–1011 (2007).
Google Scholar
Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006).
Google Scholar
Arellano, G., Medina, N. G., Tan, S., Mohamad, M. & Davies, S. J. Crown damage and the mortality of tropical trees. New Phytol. 221, 169–179 (2018).
Google Scholar
Zhang, Y.-J. et al. Size‐dependent mortality in a Neotropical savanna tree: the role of height‐related adjustments in hydraulic architecture and carbon allocation. Plant Cell Environ. 32, 1456–1466 (2009).
Google Scholar
Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).
Google Scholar
Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
Google Scholar
Harel, M. & Price, C. Thunderstorm trends over Africa. J. Clim. 33, 2741–2755 (2020).
Google Scholar
IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (Cambridge Univ. Press, 2014).
Fu, Z. et al. Recovery time and state change of terrestrial carbon cycle after disturbance. Environ. Res. Lett. 12, 104004 (2017).
Google Scholar
Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).
Google Scholar
Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).
Google Scholar
Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).
Google Scholar
Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).
Google Scholar
Banin, L. et al. What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob. Ecol. Biogeogr. 21, 1179–1190 (2012).
Google Scholar
Brando, P. et al. Effects of partial throughfall exclusion on the phenology of Coussarea racemosa (Rubiaceae) in an east-central Amazon rainforest. Oecologia 150, 181–189 (2006).
Google Scholar
Lugo, A. E. & Scatena, F. N. Background and catastrophic tree mortality in tropical moist, wet, and rain forests. Biotropica 28, 585–599 (1996).
Google Scholar
Feeley, K. J., Bravo-Avila., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Change 10, 965–970 (2020).
Google Scholar
Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth–lifespan trade-offs. Nat. Commun. 11, 4241 (2020).
Google Scholar
Bugmann, H. et al. Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale. Ecosphere 10, e02616 (2019).
Google Scholar
Arellano, G., Zuleta, D. & Davies, S. J. Tree death and damage: A standardized protocol for frequent surveys in tropical forests. J. Veg. Sci. 32, e12981 (2021).
Google Scholar
Chan, K.-J., Phillips, O. L., Monteagudo, A., Torres-Lezama, A. & Vásquez Martínez, R. How do trees die? Mode of death in northern Amazonia. J. Veg. Sci. 20, 260–268 (2009).
Google Scholar
Source: Ecology - nature.com