in

Reversed evolution of grazer resistance to cyanobacteria

  • 1.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 29, R960–R967 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Müller-Navarra, D. C., Brett, M. T., Liston, A. M. & Goldman, C. R. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403, 74 (2000).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    von Elert, E., Martin-Creuzburg, D. & Le Coz, J. R. Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proc. R. Soc. Lond. B: Biol. Sci. 270, 1209–1214 (2003).

    Article 
    CAS 

    Google Scholar 

  • 6.

    Wilson, A. E., Sarnelle, O. & Tillmanns, A. R. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: Meta-analyses of laboratory experiments. Limnol. Oceanogr. 51, 1915–1924 (2006).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Martin-Creuzburg, D., von Elert, E. & Hoffmann, K. H. Nutritional constraints at the cyanobacteria—Daphnia magna interface: the role of sterols. Limnol. Oceanogr. 53, 456–468 (2008).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Gustafsson, S. & Hansson, L.-A. Development of tolerance against toxic cyanobacteria in Daphnia. Aquat. Ecol. 38, 37–44 (2004).

    Article 

    Google Scholar 

  • 9.

    Paerl, H. W. & Fulton, R. S. in Ecology of harmful algae 95–109 (Springer, 2006).

  • 10.

    Schaffner, L. R. et al. Consumer-resource dynamics is an eco-evolutionary process in a natural plankton community. Nat. Ecol. Evol. 3, 1351–1358 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Kerfoot, W. C., Robbins, J. A. & Weider, L. J. A new approach to historical reconstruction: combining descriptive and experimental paleolimnology. Limnol. Oceanogr. 44, 1232–1247 (1999).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Hairston, N. G. Jr. et al. Lake ecosystems: rapid evolution revealed by dormant eggs. Nature 401, 446 (1999).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Hairston, N. G. Jr. et al. Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? Evolution 55, 2203–2214 (2001).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Jochimsen, M. C., Kümmerlin, R. & Straile, D. Compensatory dynamics and the stability of phytoplankton biomass during four decades of eutrophication and oligotrophication. Ecol. Lett. 16, 81–89 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Güde, H. & Straile, D. Bodensee: Ökologie und anthropogene Belastungen eines tiefen Voralpensees (Schweizerbart, 2016).

  • 16.

    Wallace, A. R. On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. III Tendency Var. Depart Indefinitely Orig. Type J Proc Linn Soc Lond. (1858).

  • 17.

    Darwin, C. The Origin of Species and the Descent of Man (Modern Library, 1859).

  • 18.

    Lahti, D. C. et al. Relaxed selection in the wild. Trends Ecol. Evol. 24, 487–496 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Fong, D. W., Kane, T. C. & Culver, D. C. Vestigialization and loss of nonfunctional characters. Annu. Rev. Ecol. Syst. 26, 249–268 (1995).

    Article 

    Google Scholar 

  • 21.

    Levinton, J. S. et al. Rapid loss of genetically based resistance to metals after the cleanup of a Superfund site. Proc. Natl Acad. Sci. 100, 9889–9891 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Turko, P., Sigg, L., Hollender, J. & Spaak, P. Rapid evolutionary loss of metal resistance revealed by hatching decades-old eggs: rapid loss of lead resistance. Evolution 70, 398–407 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Schwander, T., Crespi, B. J., Gries, R. & Gries, G. Neutral and selection-driven decay of sexual traits in asexual stick insects. Proc. R. Soc. B: Biol. Sci. 280, 20130823 (2013).

    Article 

    Google Scholar 

  • 24.

    Kettlewell, H. B. D. Further selection experiments on industrial melanism in the Lepidoptera. Heredity 10, 287–301 (1956).

    Article 

    Google Scholar 

  • 25.

    Hairston, N. G. & Dillon, T. A. Fluctuating selection and response in a population of freshwater copepods. Evolution 44, 1796–1805 (1990).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’s Finches. Science 313, 224–226 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Straile, D. & Geller, W. Crustacean zooplankton in Lake Constance from 1920 to 1995: response to eutrophication and re-oligotrophication. Adv. Limnol. 53, 255–274 (1998).

  • 28.

    Hairston, N. G. Jr. & Kearns, C. M. Temporal dispersal: ecological and evolutionary aspects of zooplankton egg banks and the role of sediment mixing. Integr. Comp. Biol. 42, 481–491 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Ghalambor, C. K., McKAY, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).

    Article 

    Google Scholar 

  • 30.

    Conover, D. O., Duffy, T. A. & Hice, L. A. The covariance between genetic and environmental influences across ecological gradients: reassessing the evolutionary significance of countergradient and cogradient variation. Ann. N. Y. Acad. Sci. 1168, 100–129 (2009).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Conover, D. O. & Schultz, E. T. Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol. Evol. 10, 248–252 (1995).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Merilä, J., Kruuk, L. E. B. & Sheldon, B. C. Cryptic evolution in a wild bird population. Nature 412, 76–79 (2001).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Garant, D., Kruuk, L. E. B., McCleery, R. H. & Sheldon, B. C. Evolution in a changing environment: a case study with Great Tit fledging mass. Am. Nat. 164, E115–E129 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Ellegren, H. & Sheldon, B. C. Genetic basis of fitness differences in natural populations. Nature 452, 169–175 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Yoshida, T., Hairston, N. G. Jr. & Ellner, S. P. Evolutionary trade–off between defence against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris. Proc. R. Soc. Lond. B: Biol. Sci. 271, 1947–1953 (2004).

    Article 

    Google Scholar 

  • 36.

    Kümmerlin, R. E. Taxonomical response of the phytoplankton community of Upper Lake Constance (Bodensee-Obersee) to eutrophication and re-oligotrophication. Arch. Hydrobiol. Spec. Issues Adv. Limnol. 53, 109–117 (1998).

    Google Scholar 

  • 37.

    Spaak, P., Fox, J. & Hairston, N. G. Jr. Modes and mechanisms of a Daphnia invasion. Proc. R. Soc. B: Biol. Sci. 279, 2936–2944 (2012).

    Article 

    Google Scholar 

  • 38.

    Brede, N. et al. The impact of human-made ecological changes on the genetic architecture of Daphnia species. Proc. Natl Acad. Sci. 106, 4758–4763 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Straile, D. Zooplankton biomass dynamics in oligotrophic versus eutrophic conditions: a test of the PEG model. Freshw. Biol. 60, 174–183 (2015).

    Article 

    Google Scholar 

  • 40.

    Carroll, S. P. et al. Applying evolutionary biology to address global challenges. Science 346, 1245993–1245993 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 41.

    Güde, H., Rossknecht, H. & Wagner, G. Anthropogenic impacts on the trophic state of Lake Constance during the 20 super (th) century. Adv. Limnol. Stuttg. 53, 85–108 (1998).

  • 42.

    Isanta Navarro, J., Kowarik, C., Wessels, M., Straile, D. & Martin‐Creuzburg, D. Resilience to changes in lake trophic state: Nutrient allocation into Daphnia resting eggs. Ecol. Evol. 9, 12813–12825 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    IGKB, I. G. für den B. Jahresbericht der Internationalen Gewässerschutzkommission für den Bodensee: Limnologischer Zustand des Bodensees Nr. 42 (2016-2017). (2018).

  • 44.

    De Stasio, B. T. The seed bank of a freshwater crustacean: copepodology for the plant ecologist. Ecology 70, 1377–1389 (1989).

    Article 

    Google Scholar 

  • 45.

    Cáceres, C. E. & Hairston, N. G. Jr. Benthic-pelagic coupling in planktonic crustaceans: the role of the benthos. Arch. Hydrobiol. 52, 163–174 (1998).

    Google Scholar 

  • 46.

    Brendonck, L. & De Meester, L. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491, 65–84 (2003).

    Article 

    Google Scholar 

  • 47.

    Hairston, N. G. Jr. & De Meester, L. Daphnia paleogenetics and environmental change: deconstructing the evolution of plasticity. Int. Rev. Hydrobiol. 93, 578–592 (2008).

    Article 

    Google Scholar 

  • 48.

    Frisch, D. et al. A millennial-scale chronicle of evolutionary responses to cultural eutrophication in. Daphnia. Ecol. Lett. 17, 360–368 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Fox, J. A. Hatching timing of Daphnia mendotae diapausing eggs of different ages. Fundam. Appl. Limnol./Arch. Hydrobiol. 168, 19–26 (2007).

    Article 

    Google Scholar 

  • 50.

    Jankowski, T. & Straile, D. A comparison of egg-bank and long-term plankton dynamics of two Daphnia species, D. hyalina and D. galeata: Potentials and limits of reconstruction. Limnol. Oceanogr. 48, 1948–1955 (2003).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Keller, B. & Spaak, P. Nonrandom sexual reproduction and diapausing egg production in a Daphnia hybrid species complex. Limnol. Oceanogr. 49, 1393–1400 (2004).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Wessels, M., Mohaupt, K., Kümmerlin, R. & Lenhard, A. Reconstructing past eutrophication trends from diatoms and biogenic silica in the sediment and the pelagic zone of Lake Constance, Germany. J. Paleolimnol. 21, 171–192 (1999).

    ADS 
    Article 

    Google Scholar 

  • 53.

    Wessels, M., Lenhard, A., Giovanoli, F. & Bollhöfer, A. High resolution time series of lead and zinc in sediments of Lake Constance. Aquat. Sci. 57, 291–304 (1995).

    Article 

    Google Scholar 

  • 54.

    Alric, B. et al. Local human pressures influence gene flow in a hybridizing Daphnia species complex. J. Evol. Biol. 29, 720–735 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Brede, N. et al. Microsatellite markers for European. Daphnia. Mol. Ecol. Notes 6, 536–539 (2006).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 4.05, logiciel sous Windows TM pour la ge ́ne ́tique des populations. (1996).

  • 57.

    Jüttner, F., Leonhardt, J. & Möhren, S. Environmental factors affecting the formation of mesityloxide, dimethylallylic alcohol and other volatile compounds excreted by Anabaena cylindrica. J. Gen. Microbiol. 129, 407–412 (1983).

    Google Scholar 


  • Source: Ecology - nature.com

    Cooling homes without warming the planet

    Powering the energy transition with better storage