in

Global phylogeography of a pantropical mangrove genus Rhizophora

  • 1.

    Spalding, M., Kainuma, M. & Collins, L. World Atlas of Mangroves. (Earthscan, 2010).

  • 2.

    Duke, N. et al. A world without mangroves?. Science 317, 41–42 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Friess, D. et al. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Env. Resour. 44, 89–115 (2019).

    Article 

    Google Scholar 

  • 4.

    Wee, et al. The integration and application of genomic information in mangrove conservation. Conserv. Biol. 33, 206–209 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Duke, N., Lo, E. & Sun, M. Global distribution and genetic discontinuities of mangroves—emerging patterns in the evolution of Rhizophora. Trees-Struct. Funct. 16, 65–79 (2002).

    Article 

    Google Scholar 

  • 6.

    Ellison, A. M., Farnsworth, E. J. & Merkt, R. E. Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecol. Biogeogr. 8, 95–115 (1999).

    Google Scholar 

  • 7.

    Plaziat, J.-C., Cavagnetto, C., Koeniguer, J.-C. & Baltzer, F. History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. Wetl. Ecol. Manag. 9, 161–180 (2001).

    Article 

    Google Scholar 

  • 8.

    Duke, N., Ball, M. & Ellison, J. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecol. Biogeogr. Lett. 7, 27–47 (1998).

    Article 

    Google Scholar 

  • 9.

    Duke, N. Genetic diversity, distributional barriers and rafting continents—more thoughts on the evolution of mangroves. Hydrobiologia 295, 167–181 (1995).

    Article 

    Google Scholar 

  • 10.

    Tomlinson, P. B. The botany of mangroves. (Cambridge University press, 1986).

  • 11.

    Schwarzbach, A. E. & Ricklefs, R. E. Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. Am. J. Bot. 87, 547–564 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Lo, E. Y. Y. Testing hybridization hypotheses and evaluating the evolutionary potential of hybrids in mangrove plant species. J. Evol. Biol. 23, 2249–2261 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Takayama, K., Tamura, M., Tateishi, Y., Webb, E. L. & Kajita, T. Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. Am. J. Bot. 100, 1191–1201 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Lo, E., Duke, N. & Sun, M. Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution. BMC Evol. Biol. 14, 83 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Chen, Y. et al. Applications of multiple nuclear genes to the molecular phylogeny, population genetics and hybrid identification in the mangrove genus Rhizophora. PLoS ONE 10, e0145058 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Xu, S. H. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl. Sci. Rev. 4, 721–734 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Tyagi, A. P. Cytogenetics and reproductive biology of mangroves in Rhizophoraceae. Aust. J. Bot. 50, 601–605 (2002).

    Article 

    Google Scholar 

  • 18.

    Tyagi, A. P. Chromosomal Pairing and Pollen Viability in Rhizophora mangle and Rhizophora stylosa Hybrids. S. Pac. J. Nat. Sci. 20, 1–3 (2002).

    Article 

    Google Scholar 

  • 19.

    Tyagi, A. P. & Singh, E. V. V. Pollen fertility and intraspecific and interspecific compatibility in mangroves of Fiji. Sex. Plant Reprod. 11, 60–63 (1998).

    Article 

    Google Scholar 

  • 20.

    Steininger, F. F. & Rögl, F. Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. Geol. Soc. Spec. Publ. 17, 659–668 (1984).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Harzhauser, M. et al. Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway. Zoo. Anz. 246, 241–256 (2007).

    Article 

    Google Scholar 

  • 22.

    Vrielynck, B., Odin, G. & Dercourt, J. Miocene palaeogeography of the Tethys Ocean; potential global correlations in the Mediterranean. Miocene stratigraphy: an integrated approach. Elsevier Science, (1997).

  • 23.

    Harzhauser, M., Piller, W. E. & Steininger, F. F. Circum-Mediterranean Oligo-Miocene biogeographic evolution—the gastropods’ point of view. Palaeogeogr. Palaeoclimatol. Palaeoecol. 183, 103–133 (2002).

    Article 

    Google Scholar 

  • 24.

    Dercourt, J. et al. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the LIAS. Tectonophysics 123, 241–315 (1986).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Marko, P. B. Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol. Biol. Evol. 19, 2005–2021 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Saenger, P. Mangrove vegetation: an evolutionary perspective. Mar. Freshw. Res. 49, 277–286 (1998).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Muller, J. & Caratini, C. Pollen of Rhizophora (Rhizophoraceae) as a guide fossil. Pollen Spores 19, 361–390 (1977).

    Google Scholar 

  • 28.

    Muller, J. Fossil pollen records of extant angiosperms. Bot. Rev. 47, 1–142 (1981).

    Article 

    Google Scholar 

  • 29.

    Germeraad, J. H., Hopping, C. A. & Muller, J. Palynology of tertiary sediments from tropical areas. Rev. Palaeobot. Palyno. 6, 189–348 (1968).

    Article 

    Google Scholar 

  • 30.

    Zachos, J., Pagani, H., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Pole, M. S. & Macphail, M. K. Eocene Nypa from Regatta Point, Tasmania. Rev. Palaeobot. Palyno. 92, 55–67 (1996).

    Article 

    Google Scholar 

  • 32.

    Hornibrook, N. D. B. New Zealand Cenozoic marine paleoclimates: a review based on the distribution of some shallow water and terrestrial biota. Pacific Neogene: environment, evolution, and events, 83–106 University of Tokyo Press, (1992).

  • 33.

    Hou, Z. & Li, S. Tethyan changes shaped aquatic diversification. Biol. Rev. 93, 874–896 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Wee, A. K. S. et al. Genetic differentiation and phylogeography of partially sympatric species complex Rhizophora mucronata Lam. and R. stylosa Griff. using SSR markers. BMC Evol. Biol. 15, 57 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Ng, W. L. et al. Closely related and sympatric but not all the same: genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula. Conserv. Genet. 16, 137–150 (2015).

    Article 

    Google Scholar 

  • 36.

    Doyle, J. & Doyle, J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 9, 11–15 (1987).

    Google Scholar 

  • 37.

    Strand, A. E., Leebens-Mack, J. & Milligan, B. G. Nuclear DNA-based markers for plant evolutionary biology. Mol. Ecol. 6, 113–118 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Cronn, R. C., Small, R. L. & Wendel, J. F. Duplicated genes evolve independently after polyploid formation in cotton. Proc. Natl. Acad. Sci. USA 96, 14406–14411 (1999).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Hayashi, K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. Genome Res. 1, 34–38 (1991).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497 (2003).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, Massachusetts, (2002).

  • 42.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Article 

    Google Scholar 

  • 44.

    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, I37-48 (1999).

    Article 

    Google Scholar 

  • 45.

    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Heled, J. & Drummond, A. J. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570–580 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 47.

    Graham, A. Paleobotanical evidence and molecular data in reconstructing the historical phytogeography of Rhizophoraceae. Ann. Mo. Bot. Gard. 93, 325–334 (2006).

    Article 

    Google Scholar 

  • 48.

    Rambaut, A. Fig Tree v1.4. (2012). Available at http://tree.bio.ed.ac.uk/software/figtree/

  • 49.

    Matzke, N. J. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).

    Article 

    Google Scholar 

  • 50.

    Blair, C. & He, X. J. RASP 4: ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 51.

    Takayama, K., Tamura, M., Tateishi, Y. & Kajita, T. Isolation and characterization of microsatellite loci in a mangrove species, Rhizophora stylosa (Rhizophoraceae). Conserv. Genet. Resour. 1, 175–178 (2009).

    Article 

    Google Scholar 

  • 52.

    Takayama, K., Tamura, M., Tateishi, Y. & Kajita, T. Isolation and characterization of microsatellite loci in the red mangrove Rhizophora mangle (Rhizophoraceae) and its related species. Conserv. Genet. 9, 1323–1325 (2008).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol. Ecol. Notes. 7, 574–578 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Accounting for firms’ positive impacts on the environment

    Homing in on longer-lasting perovskite solar cells