Wong, M. K., Guénard, B. & Lewis, O. T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 94, 999–1022. https://doi.org/10.1111/brv.12488 (2019).
Google Scholar
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002 (2006).
Google Scholar
Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x (2007).
Google Scholar
Forrest, J. R. K., Thorp, R. W., Kremen, C. & Williams, N. M. Contrasting patterns in species and functional-trait diversity of bees in an agricultural landscape. J. Appl. Ecol. 52, 706–715. https://doi.org/10.1111/1365-2664.12433 (2015).
Google Scholar
Williams, N. M. et al. Ecological and life-history traits predict bee species responses to environmental disturbances. Biol. Conserv. 143, 2280–2291. https://doi.org/10.1016/j.biocon.2010.03.024 (2010).
Google Scholar
Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1481. https://doi.org/10.1038/s41467-019-09393-6 (2019).
Google Scholar
Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B 282, 20142620. https://doi.org/10.1098/rspb.2014.2620 (2015).
Google Scholar
Bartomeus, I., Cariveau, D. P., Harrison, T. & Winfree, R. On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos 127, 306–315. https://doi.org/10.1111/oik.04507 (2018).
Google Scholar
Paull, S. H. et al. From superspreaders to disease hotspots: Linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82. https://doi.org/10.1890/110111 (2012).
Google Scholar
Perkins, S. E., Cattadori, I. M., Tagliapietra, V., Rizzoli, A. P. & Hudson, P. J. Empirical evidence for key hosts in persistence of a tick-borne disease. Int. J. Parasitol. 33, 909–917. https://doi.org/10.1016/s0020-7519(03)00128-0 (2003).
Google Scholar
Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).
Google Scholar
Ravoet, J. et al. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58. https://doi.org/10.1016/j.jip.2014.08.007 (2014).
Google Scholar
Evison, S. E. F. et al. Pervasiveness of parasites in pollinators. PLoS ONE 7, e30641. https://doi.org/10.1371/journal.pone.0030641 (2012).
Google Scholar
Dolezal, A. G. et al. Honey bee viruses in wild bees: viral prevalence, loads, and experimental inoculation. PLoS ONE 11, e0166190. https://doi.org/10.1371/journal.pone.0166190 (2016).
Google Scholar
Levitt, A. L. et al. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 176, 232–240. https://doi.org/10.1016/j.virusres.2013.06.013 (2013).
Google Scholar
Figueroa, L. L. et al. Landscape simplification shapes pathogen prevalence in plant-pollinator networks. Ecol. Lett. 23, 1212–1222. https://doi.org/10.1111/ele.13521 (2020).
Google Scholar
Graystock, P. et al. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat. Ecol. Evol. 4, 1358–1367. https://doi.org/10.1038/s41559-020-1247-x (2020).
Google Scholar
Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596. https://doi.org/10.1007/s00442-007-0752-9 (2007).
Google Scholar
Figueroa, L. L. et al. Bee pathogen transmission dynamics: deposition, persistence and acquisition on flowers. Proc. R. Soc. B 286, 20190603. https://doi.org/10.1098/rspb.2019.0603 (2019).
Google Scholar
Palmer-Young, E. C., Calhoun, A. C., Mirzayeva, A. & Sadd, B. M. Effects of the floral phytochemical eugenol on parasite evolution and bumble bee infection and preference. Sci. Rep. 8, 2074. https://doi.org/10.1038/s41598-018-20369-2 (2018).
Google Scholar
Manson, J. S., Otterstatter, M. C. & Thomson, J. D. Consumption of a nectar alkaloid reduces pathogen load in bumble bees. Oecologia 162, 81–89. https://doi.org/10.1007/s00442-009-1431-9 (2010).
Google Scholar
Otterstatter, M. C. & Thomson, J. D. Within-host dynamics of an intestinal pathogen of bumble bees. Parasitology 133, 749–761. https://doi.org/10.1017/S003118200600120X (2006).
Google Scholar
Rutrecht, S. T. & Brown, M. J. F. Within colony dynamics of Nosema bombi infections: disease establishment, epidemiology and potential vertical transmission. Apidologie 39, 504–514. https://doi.org/10.1051/apido:2008031 (2008).
Google Scholar
Roberts, K. E., Evison, S. E. F., Baer, B. & Hughes, W. O. H. The cost of promiscuity: Sexual transmission of Nosema microsporidian parasites in polyandrous honey bees. Sci. Rep. 5, 10982. https://doi.org/10.1038/srep10982 (2015).
Google Scholar
Schmid-Hempel, P. Parasites in Social Insects (Princeton University Press, Princeton, 1998).
Wuellner, C. T. Nest site preference and success in a gregarious, ground-nesting bee Dieunomia triangulifera. Ecol. Entomol. 24, 471–479. https://doi.org/10.1046/j.1365-2311.1999.00215.x (1999).
Google Scholar
Potts, S. & Willmer, P. Abiotic and biotic factors influencing nest-site selection by Halictus rubicundus, a ground-nesting halictine bee. Ecol. Entomol. 22, 319–328. https://doi.org/10.1046/j.1365-2311.1997.00071.x (1997).
Google Scholar
Cane, J. H. Soils of ground-nesting bees (Hymenoptera: Apoidea): texture, moisture, cell depth and climate. J. Kans. Entomol. Soc. 64, 406–413 (1991).
Leonard, R. J. & Harmon-Threatt, A. N. Methods for rearing ground-nesting bees under laboratory conditions. Apidologie 50, 689–703. https://doi.org/10.1007/s13592-019-00679-8 (2019).
Google Scholar
Folly, A. J., Koch, H., Stevenson, P. C. & Brown, M. J. F. Larvae act as a transient transmission hub for the prevalent bumblebee parasite Crithidia bombi. J. Invertebr. Pathol. 148, 81–85. https://doi.org/10.1016/j.jip.2017.06.001 (2017).
Google Scholar
Kappeler, P. M., Cremer, S. & Nunn, C. L. Sociality and health: impacts of sociality on disease susceptibility and transmission in animal and human societies. Philos. T. R. Soc. B 370, 20140116. https://doi.org/10.1098/rstb.2014.0116 (2015).
Google Scholar
Stow, A. et al. Antimicrobial defences increase with sociality in bees. Biol. Lett. 3, 422–424. https://doi.org/10.1098/rsbl.2007.0178 (2007).
Google Scholar
Spivak, M. & Reuter, G. S. Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie 32, 555–565. https://doi.org/10.1051/apido:2001103 (2001).
Google Scholar
Pinilla-Gallego, M. S. et al. Within-colony transmission of microsporidian and trypanosomatid parasites in honey bee and bumble bee colonies. Environ. Entomol. https://doi.org/10.1093/ee/nvaa112 (2020).
Google Scholar
Nunn, C. L., Jordán, F., McCabe, C. M., Verdolin, J. L. & Fewell, J. H. Infectious disease and group size: more than just a numbers game. Philos. T. R. Soc. B 370, 20140111. https://doi.org/10.1098/rstb.2014.0111 (2015).
Google Scholar
Adler, L. S., Barber, N. A., Biller, O. M. & Irwin, R. E. Flowering plant composition shapes pathogen infection intensity and reproduction in bumble bee colonies. Proc. Natl. Acad. Sci. USA 117, 11559–11565. https://doi.org/10.1073/pnas.2000074117 (2020).
Google Scholar
Adler, L. S. et al. Disease where you dine: plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99, 2535–2545. https://doi.org/10.1002/ecy.2503 (2018).
Google Scholar
Koch, H., Brown, M. J. F. & Stevenson, P. C. The role of disease in bee foraging ecology. Curr. Opin. Insect Sci. 21, 60–67. https://doi.org/10.1016/j.cois.2017.05.008 (2017).
Google Scholar
Giacomini, J. J. et al. Medicinal value of sunflower pollen against bee pathogens. Sci. Rep. 8, 14394. https://doi.org/10.1038/s41598-018-32681-y (2018).
Google Scholar
LoCascio, G. M., Aguirre, L., Irwin, R. E. & Adler, L. S. Pollen from multiple sunflower cultivars and species reduces a common bumblebee gut pathogen. R. Soc. Open Sci. 6, 190279. https://doi.org/10.1098/rsos.190279 (2019).
Google Scholar
Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Does parasitic infection impair the ability of bumblebees to learn flower-handling techniques?. Anim. behav. 70, 209–215. https://doi.org/10.1016/j.anbehav.2004.09.025 (2005).
Google Scholar
Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. R. Soc. B 273, 1073–1078. https://doi.org/10.1098/rspb.2005.3423 (2006).
Google Scholar
Goulson, D., O’Connor, S. & Park, K. J. The impacts of predators and parasites on wild bumblebee colonies. Ecol. Entomol. 43, 168–181. https://doi.org/10.1111/een.12482 (2018).
Google Scholar
Graystock, P., Meeus, I., Smagghe, G., Goulson, D. & Hughes, W. O. The effects of single and mixed infections of Apicystis bombi and deformed wing virus in Bombus terrestris. Parasitology 143, 358–365. https://doi.org/10.1017/S0031182015001614 (2016).
Google Scholar
Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119. https://doi.org/10.1016/j.jip2013.06.005 (2013).
Google Scholar
Otti, O. & Schmid-Hempel, P. Nosema bombi: a pollinator parasite with detrimental fitness effects. J. Invertebr. Pathol. 96, 118–124. https://doi.org/10.1016/j.jip.2007.03.016 (2007).
Google Scholar
Bramke, K., Müller, U., McMahon, D. P. & Rolff, J. Exposure of larvae of the solitary bee Osmia bicornis to the honey bee pathogen Nosema ceranae affects life history. Insects 10, 380. https://doi.org/10.3390/insects10110380 (2019).
Google Scholar
Eiri, D. M., Suwannapong, G., Endler, M. & Nieh, J. C. Nosema ceranae can infect honey bee larvae and reduces subsequent adult longevity. PLoS ONE 10, e0126330. https://doi.org/10.1371/journal.pone.0126330 (2015).
Google Scholar
Mitchell, T. B. Bees of the Eastern United States: volume I. N. C. Agric. Exp. Sta. Tech. Bull 1, 1–538 (1960).
Mitchell, T. B. Bees of the Eastern United States: volume II. N. C. Agric. Exp. Sta. Tech. Bull II, 1–557 (1962).
LaBerge, W. E. A revision of the bees of the genus Andrena of the Western Hemisphere. Part XII. Subgenera Leucandrena, Ptilandrena, Scoliandrena and Melandrena. Trans. Am. Entomol. Soc. 112, 191–248 (1986).
Gibbs, J. Revision of the metallic Lasioglossum (Dialictus) of Eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa 3073, 1–216 (2011).
Google Scholar
Rehan, S. M. & Sheffield, C. S. Morphological and molecular delineation of a new species in the Ceratina dupla species-group (Hymenoptera: Apidae: Xylocopinae) of Eastern North America. Zootaxa 2873, 35–50 (2011).
Google Scholar
Gibbs, J., Packer, L., Dumesh, S. & Danforth, B. N. Revision and reclassification of Lasioglossum (Evylaeus), L. (Hemihalictus) and L. (Sphecodogastra) in Eastern North America (Hymenoptera: Apoidea: Halictidae). Zootaxa 3672, 1–117 (2013).
Google Scholar
Coutinho, J. G. D. E., Garibaldi, L. A. & Viana, B. F. The influence of local and landscape scale on single response traits in bees: A meta-analysis. Agr. Ecosyst. Environ. 256, 61–73. https://doi.org/10.1016/j.agee.2017.12.025 (2018).
Google Scholar
Bartomeus, I. et al. Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc. Natl. Acad. Sci. USA 110, 4656–4660. https://doi.org/10.1073/pnas.1218503110 (2013).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
Stevenson, M. et al. epiR: Tools for the analysis of epidemiological data. R package version 0.9–62 (2015).
Teder, T. & Tammaru, T. Sexual size dimorphism within species increases with body size in insects. Oikos 108, 321–334. https://doi.org/10.1111/j.0030-1299.2005.13609.x (2005).
Google Scholar
Müller, U., McMahon, D. P. & Rolff, J. Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae. Agric. For. Entomol. 65, 191–199. https://doi.org/10.1111/afe.12338 (2019).
Google Scholar
Strobl, V., Yañez, O., Straub, L., Albrecht, M. & Neumann, P. Trypanosomatid parasites infecting managed honeybees and wild solitary bees. Int. J. Parasitol. 49, 605–613. https://doi.org/10.1016/j.ijpara.2019.03.006 (2019).
Google Scholar
Ngor, L. et al. Cross-infectivity of honey and bumble bee-associated parasites across three bee families. Parasitology 147, 1–62. https://doi.org/10.1017/S0031182020001018 (2020).
Google Scholar
Figueroa, L. L., Grincavitch, C. & McArt, S. H. Crithidia bombi can infect two solitary bee species while host survivorship depends on diet. Parasitology 148, 435–442. https://doi.org/10.1017/S0031182020002218 (2021).
Google Scholar
Rhodes, J. R., McAlpine, C. A., Zuur, A., Smith, G. & Ieno, E. Mixed Effects Models and Extensions in Ecology with R Statistics for Biology and Health 469–492 (Springer, New York, 2009).
Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Method. Res. 33, 261–304. https://doi.org/10.1177/0049124104268644 (2004).
Google Scholar
Ruiz-González, M. X. et al. Dynamic transmission, host quality, and population structure in a multi-host parasite of bumblebees. Evolution 66, 3053–3066. https://doi.org/10.1111/j.1558-5646.2012.01655.x (2012).
Google Scholar
Cook-Patton, S. C., McArt, S. H., Parachnowitsch, A. L., Thaler, J. S. & Agrawal, A. A. A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology 92, 915–923. https://doi.org/10.1890/10-0999.1 (2011).
Google Scholar
Goulson, D. & Sparrow, K. R. Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. J. Insect Conserv. 13, 177–181. https://doi.org/10.1007/s10841-008-9140-y (2009).
Google Scholar
Grab, H. et al. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J. Appl. Ecol. 56, 2144–2154. https://doi.org/10.1111/1365-2664.13456 (2019).
Google Scholar
Renauld, M., Hutchinson, A., Loeb, G., Poveda, K. & Connelly, H. Landscape smplification constrains adult size in a native ground-nesting bee. PLoS ONE 11, e0150946. https://doi.org/10.1371/journal.pone.0150946 (2016).
Google Scholar
Persson, A. S. & Smith, H. G. Bumblebee colonies produce larger foragers in complex landscapes. Basic Appl. Ecol. 12, 695–702. https://doi.org/10.1016/j.baae.2011.10.002 (2011).
Google Scholar
Bommarco, R. et al. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc. R. Soc. B 277, 2075–2082. https://doi.org/10.1098/rspb.2009.2221 (2010).
Google Scholar
Yerushalmi, S., Bodenhaimer, S. & Bloch, G. Developmentally determined attenuation in circadian rhythms links chronobiology to social organization in bees. J. Exp. Biol. 209, 1044–1051. https://doi.org/10.1242/jeb.02125 (2006).
Google Scholar
McNeil, D. J. et al. Bumble bees in landscapes with abundant floral resources have lower pathogen loads. Sci. Rep. 10, 22306. https://doi.org/10.1038/s41598-020-78119-2 (2020).
Google Scholar
Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568. https://doi.org/10.1038/ncomms9568 (2015).
Google Scholar
Williams, N. M., Minckley, R. L. & Silveira, F. A. Variation in native bee faunas and its implications for detecting community changes. Conserv. Ecol. 5, 7 (2001).
Bartomeus, I. et al. Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc. Natl. Acad. Sci. USA 108, 20645–20649. https://doi.org/10.1073/pnas.1115559108 (2011).
Google Scholar
Stemkovski, M. et al. Bee phenology is predicted by climatic variation and functional traits. Ecol. Lett. 23, 1589–1598. https://doi.org/10.1111/ele.13583 (2020).
Google Scholar
Source: Ecology - nature.com