in

Functional traits linked to pathogen prevalence in wild bee communities

  • 1.

    Wong, M. K., Guénard, B. & Lewis, O. T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 94, 999–1022. https://doi.org/10.1111/brv.12488 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 2.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x (2007).

    Article 

    Google Scholar 

  • 4.

    Forrest, J. R. K., Thorp, R. W., Kremen, C. & Williams, N. M. Contrasting patterns in species and functional-trait diversity of bees in an agricultural landscape. J. Appl. Ecol. 52, 706–715. https://doi.org/10.1111/1365-2664.12433 (2015).

    Article 

    Google Scholar 

  • 5.

    Williams, N. M. et al. Ecological and life-history traits predict bee species responses to environmental disturbances. Biol. Conserv. 143, 2280–2291. https://doi.org/10.1016/j.biocon.2010.03.024 (2010).

    Article 

    Google Scholar 

  • 6.

    Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1481. https://doi.org/10.1038/s41467-019-09393-6 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B 282, 20142620. https://doi.org/10.1098/rspb.2014.2620 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 8.

    Bartomeus, I., Cariveau, D. P., Harrison, T. & Winfree, R. On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos 127, 306–315. https://doi.org/10.1111/oik.04507 (2018).

    Article 

    Google Scholar 

  • 9.

    Paull, S. H. et al. From superspreaders to disease hotspots: Linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82. https://doi.org/10.1890/110111 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 10.

    Perkins, S. E., Cattadori, I. M., Tagliapietra, V., Rizzoli, A. P. & Hudson, P. J. Empirical evidence for key hosts in persistence of a tick-borne disease. Int. J. Parasitol. 33, 909–917. https://doi.org/10.1016/s0020-7519(03)00128-0 (2003).

    Article 
    PubMed 

    Google Scholar 

  • 11.

    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Ravoet, J. et al. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58. https://doi.org/10.1016/j.jip.2014.08.007 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 13.

    Evison, S. E. F. et al. Pervasiveness of parasites in pollinators. PLoS ONE 7, e30641. https://doi.org/10.1371/journal.pone.0030641 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Dolezal, A. G. et al. Honey bee viruses in wild bees: viral prevalence, loads, and experimental inoculation. PLoS ONE 11, e0166190. https://doi.org/10.1371/journal.pone.0166190 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Levitt, A. L. et al. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 176, 232–240. https://doi.org/10.1016/j.virusres.2013.06.013 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Figueroa, L. L. et al. Landscape simplification shapes pathogen prevalence in plant-pollinator networks. Ecol. Lett. 23, 1212–1222. https://doi.org/10.1111/ele.13521 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 17.

    Graystock, P. et al. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat. Ecol. Evol. 4, 1358–1367. https://doi.org/10.1038/s41559-020-1247-x (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596. https://doi.org/10.1007/s00442-007-0752-9 (2007).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Figueroa, L. L. et al. Bee pathogen transmission dynamics: deposition, persistence and acquisition on flowers. Proc. R. Soc. B 286, 20190603. https://doi.org/10.1098/rspb.2019.0603 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 20.

    Palmer-Young, E. C., Calhoun, A. C., Mirzayeva, A. & Sadd, B. M. Effects of the floral phytochemical eugenol on parasite evolution and bumble bee infection and preference. Sci. Rep. 8, 2074. https://doi.org/10.1038/s41598-018-20369-2 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Manson, J. S., Otterstatter, M. C. & Thomson, J. D. Consumption of a nectar alkaloid reduces pathogen load in bumble bees. Oecologia 162, 81–89. https://doi.org/10.1007/s00442-009-1431-9 (2010).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Otterstatter, M. C. & Thomson, J. D. Within-host dynamics of an intestinal pathogen of bumble bees. Parasitology 133, 749–761. https://doi.org/10.1017/S003118200600120X (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Rutrecht, S. T. & Brown, M. J. F. Within colony dynamics of Nosema bombi infections: disease establishment, epidemiology and potential vertical transmission. Apidologie 39, 504–514. https://doi.org/10.1051/apido:2008031 (2008).

    Article 

    Google Scholar 

  • 24.

    Roberts, K. E., Evison, S. E. F., Baer, B. & Hughes, W. O. H. The cost of promiscuity: Sexual transmission of Nosema microsporidian parasites in polyandrous honey bees. Sci. Rep. 5, 10982. https://doi.org/10.1038/srep10982 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Schmid-Hempel, P. Parasites in Social Insects (Princeton University Press, Princeton, 1998).

    Google Scholar 

  • 26.

    Wuellner, C. T. Nest site preference and success in a gregarious, ground-nesting bee Dieunomia triangulifera. Ecol. Entomol. 24, 471–479. https://doi.org/10.1046/j.1365-2311.1999.00215.x (1999).

    Article 

    Google Scholar 

  • 27.

    Potts, S. & Willmer, P. Abiotic and biotic factors influencing nest-site selection by Halictus rubicundus, a ground-nesting halictine bee. Ecol. Entomol. 22, 319–328. https://doi.org/10.1046/j.1365-2311.1997.00071.x (1997).

    Article 

    Google Scholar 

  • 28.

    Cane, J. H. Soils of ground-nesting bees (Hymenoptera: Apoidea): texture, moisture, cell depth and climate. J. Kans. Entomol. Soc. 64, 406–413 (1991).

    Google Scholar 

  • 29.

    Leonard, R. J. & Harmon-Threatt, A. N. Methods for rearing ground-nesting bees under laboratory conditions. Apidologie 50, 689–703. https://doi.org/10.1007/s13592-019-00679-8 (2019).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Folly, A. J., Koch, H., Stevenson, P. C. & Brown, M. J. F. Larvae act as a transient transmission hub for the prevalent bumblebee parasite Crithidia bombi. J. Invertebr. Pathol. 148, 81–85. https://doi.org/10.1016/j.jip.2017.06.001 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Kappeler, P. M., Cremer, S. & Nunn, C. L. Sociality and health: impacts of sociality on disease susceptibility and transmission in animal and human societies. Philos. T. R. Soc. B 370, 20140116. https://doi.org/10.1098/rstb.2014.0116 (2015).

    Article 

    Google Scholar 

  • 32.

    Stow, A. et al. Antimicrobial defences increase with sociality in bees. Biol. Lett. 3, 422–424. https://doi.org/10.1098/rsbl.2007.0178 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Spivak, M. & Reuter, G. S. Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie 32, 555–565. https://doi.org/10.1051/apido:2001103 (2001).

    Article 

    Google Scholar 

  • 34.

    Pinilla-Gallego, M. S. et al. Within-colony transmission of microsporidian and trypanosomatid parasites in honey bee and bumble bee colonies. Environ. Entomol. https://doi.org/10.1093/ee/nvaa112 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 35.

    Nunn, C. L., Jordán, F., McCabe, C. M., Verdolin, J. L. & Fewell, J. H. Infectious disease and group size: more than just a numbers game. Philos. T. R. Soc. B 370, 20140111. https://doi.org/10.1098/rstb.2014.0111 (2015).

    Article 

    Google Scholar 

  • 36.

    Adler, L. S., Barber, N. A., Biller, O. M. & Irwin, R. E. Flowering plant composition shapes pathogen infection intensity and reproduction in bumble bee colonies. Proc. Natl. Acad. Sci. USA 117, 11559–11565. https://doi.org/10.1073/pnas.2000074117 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 37.

    Adler, L. S. et al. Disease where you dine: plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99, 2535–2545. https://doi.org/10.1002/ecy.2503 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Koch, H., Brown, M. J. F. & Stevenson, P. C. The role of disease in bee foraging ecology. Curr. Opin. Insect Sci. 21, 60–67. https://doi.org/10.1016/j.cois.2017.05.008 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 39.

    Giacomini, J. J. et al. Medicinal value of sunflower pollen against bee pathogens. Sci. Rep. 8, 14394. https://doi.org/10.1038/s41598-018-32681-y (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    LoCascio, G. M., Aguirre, L., Irwin, R. E. & Adler, L. S. Pollen from multiple sunflower cultivars and species reduces a common bumblebee gut pathogen. R. Soc. Open Sci. 6, 190279. https://doi.org/10.1098/rsos.190279 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Does parasitic infection impair the ability of bumblebees to learn flower-handling techniques?. Anim. behav. 70, 209–215. https://doi.org/10.1016/j.anbehav.2004.09.025 (2005).

    Article 

    Google Scholar 

  • 42.

    Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. R. Soc. B 273, 1073–1078. https://doi.org/10.1098/rspb.2005.3423 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 43.

    Goulson, D., O’Connor, S. & Park, K. J. The impacts of predators and parasites on wild bumblebee colonies. Ecol. Entomol. 43, 168–181. https://doi.org/10.1111/een.12482 (2018).

    Article 

    Google Scholar 

  • 44.

    Graystock, P., Meeus, I., Smagghe, G., Goulson, D. & Hughes, W. O. The effects of single and mixed infections of Apicystis bombi and deformed wing virus in Bombus terrestris. Parasitology 143, 358–365. https://doi.org/10.1017/S0031182015001614 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 45.

    Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119. https://doi.org/10.1016/j.jip2013.06.005 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 46.

    Otti, O. & Schmid-Hempel, P. Nosema bombi: a pollinator parasite with detrimental fitness effects. J. Invertebr. Pathol. 96, 118–124. https://doi.org/10.1016/j.jip.2007.03.016 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 47.

    Bramke, K., Müller, U., McMahon, D. P. & Rolff, J. Exposure of larvae of the solitary bee Osmia bicornis to the honey bee pathogen Nosema ceranae affects life history. Insects 10, 380. https://doi.org/10.3390/insects10110380 (2019).

    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Eiri, D. M., Suwannapong, G., Endler, M. & Nieh, J. C. Nosema ceranae can infect honey bee larvae and reduces subsequent adult longevity. PLoS ONE 10, e0126330. https://doi.org/10.1371/journal.pone.0126330 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Mitchell, T. B. Bees of the Eastern United States: volume I. N. C. Agric. Exp. Sta. Tech. Bull 1, 1–538 (1960).

    Google Scholar 

  • 50.

    Mitchell, T. B. Bees of the Eastern United States: volume II. N. C. Agric. Exp. Sta. Tech. Bull II, 1–557 (1962).

    Google Scholar 

  • 51.

    LaBerge, W. E. A revision of the bees of the genus Andrena of the Western Hemisphere. Part XII. Subgenera Leucandrena, Ptilandrena, Scoliandrena and Melandrena. Trans. Am. Entomol. Soc. 112, 191–248 (1986).

    Google Scholar 

  • 52.

    Gibbs, J. Revision of the metallic Lasioglossum (Dialictus) of Eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa 3073, 1–216 (2011).

    Article 

    Google Scholar 

  • 53.

    Rehan, S. M. & Sheffield, C. S. Morphological and molecular delineation of a new species in the Ceratina dupla species-group (Hymenoptera: Apidae: Xylocopinae) of Eastern North America. Zootaxa 2873, 35–50 (2011).

    Article 

    Google Scholar 

  • 54.

    Gibbs, J., Packer, L., Dumesh, S. & Danforth, B. N. Revision and reclassification of Lasioglossum (Evylaeus), L. (Hemihalictus) and L. (Sphecodogastra) in Eastern North America (Hymenoptera: Apoidea: Halictidae). Zootaxa 3672, 1–117 (2013).

    Article 

    Google Scholar 

  • 55.

    Coutinho, J. G. D. E., Garibaldi, L. A. & Viana, B. F. The influence of local and landscape scale on single response traits in bees: A meta-analysis. Agr. Ecosyst. Environ. 256, 61–73. https://doi.org/10.1016/j.agee.2017.12.025 (2018).

    Article 

    Google Scholar 

  • 56.

    Bartomeus, I. et al. Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc. Natl. Acad. Sci. USA 110, 4656–4660. https://doi.org/10.1073/pnas.1218503110 (2013).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • 58.

    Stevenson, M. et al. epiR: Tools for the analysis of epidemiological data. R package version 0.9–62 (2015).

  • 59.

    Teder, T. & Tammaru, T. Sexual size dimorphism within species increases with body size in insects. Oikos 108, 321–334. https://doi.org/10.1111/j.0030-1299.2005.13609.x (2005).

    Article 

    Google Scholar 

  • 60.

    Müller, U., McMahon, D. P. & Rolff, J. Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae. Agric. For. Entomol. 65, 191–199. https://doi.org/10.1111/afe.12338 (2019).

    Article 

    Google Scholar 

  • 61.

    Strobl, V., Yañez, O., Straub, L., Albrecht, M. & Neumann, P. Trypanosomatid parasites infecting managed honeybees and wild solitary bees. Int. J. Parasitol. 49, 605–613. https://doi.org/10.1016/j.ijpara.2019.03.006 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 62.

    Ngor, L. et al. Cross-infectivity of honey and bumble bee-associated parasites across three bee families. Parasitology 147, 1–62. https://doi.org/10.1017/S0031182020001018 (2020).

    Article 

    Google Scholar 

  • 63.

    Figueroa, L. L., Grincavitch, C. & McArt, S. H. Crithidia bombi can infect two solitary bee species while host survivorship depends on diet. Parasitology 148, 435–442. https://doi.org/10.1017/S0031182020002218 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 64.

    Rhodes, J. R., McAlpine, C. A., Zuur, A., Smith, G. & Ieno, E. Mixed Effects Models and Extensions in Ecology with R Statistics for Biology and Health 469–492 (Springer, New York, 2009).

    Google Scholar 

  • 65.

    Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Method. Res. 33, 261–304. https://doi.org/10.1177/0049124104268644 (2004).

    MathSciNet 
    Article 

    Google Scholar 

  • 66.

    Ruiz-González, M. X. et al. Dynamic transmission, host quality, and population structure in a multi-host parasite of bumblebees. Evolution 66, 3053–3066. https://doi.org/10.1111/j.1558-5646.2012.01655.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • 67.

    Cook-Patton, S. C., McArt, S. H., Parachnowitsch, A. L., Thaler, J. S. & Agrawal, A. A. A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology 92, 915–923. https://doi.org/10.1890/10-0999.1 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 68.

    Goulson, D. & Sparrow, K. R. Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. J. Insect Conserv. 13, 177–181. https://doi.org/10.1007/s10841-008-9140-y (2009).

    Article 

    Google Scholar 

  • 69.

    Grab, H. et al. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J. Appl. Ecol. 56, 2144–2154. https://doi.org/10.1111/1365-2664.13456 (2019).

    Article 

    Google Scholar 

  • 70.

    Renauld, M., Hutchinson, A., Loeb, G., Poveda, K. & Connelly, H. Landscape smplification constrains adult size in a native ground-nesting bee. PLoS ONE 11, e0150946. https://doi.org/10.1371/journal.pone.0150946 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Persson, A. S. & Smith, H. G. Bumblebee colonies produce larger foragers in complex landscapes. Basic Appl. Ecol. 12, 695–702. https://doi.org/10.1016/j.baae.2011.10.002 (2011).

    Article 

    Google Scholar 

  • 72.

    Bommarco, R. et al. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc. R. Soc. B 277, 2075–2082. https://doi.org/10.1098/rspb.2009.2221 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 73.

    Yerushalmi, S., Bodenhaimer, S. & Bloch, G. Developmentally determined attenuation in circadian rhythms links chronobiology to social organization in bees. J. Exp. Biol. 209, 1044–1051. https://doi.org/10.1242/jeb.02125 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 74.

    McNeil, D. J. et al. Bumble bees in landscapes with abundant floral resources have lower pathogen loads. Sci. Rep. 10, 22306. https://doi.org/10.1038/s41598-020-78119-2 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568. https://doi.org/10.1038/ncomms9568 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Williams, N. M., Minckley, R. L. & Silveira, F. A. Variation in native bee faunas and its implications for detecting community changes. Conserv. Ecol. 5, 7 (2001).

    Google Scholar 

  • 77.

    Bartomeus, I. et al. Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc. Natl. Acad. Sci. USA 108, 20645–20649. https://doi.org/10.1073/pnas.1115559108 (2011).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 78.

    Stemkovski, M. et al. Bee phenology is predicted by climatic variation and functional traits. Ecol. Lett. 23, 1589–1598. https://doi.org/10.1111/ele.13583 (2020).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Ancient atmospheric oxygen sleuthing with ocean chromium

    Assessment of water resource security in karst area of Guizhou Province, China