in

Future increases in Arctic lightning and fire risk for permafrost carbon

  • 1.

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Article 

    Google Scholar 

  • 2.

    Mishra, U. et al. Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/8/3/035020 (2013).

  • 3.

    Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage. 5, 81–91 (2014).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).

    Article 

    Google Scholar 

  • 6.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    CAS 
    Article 

    Google Scholar 

  • 8.

    McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).

    Article 

    Google Scholar 

  • 9.

    Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl Acad. Sci. USA 112, 3752–3757 (2015).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).

    Article 
    CAS 

    Google Scholar 

  • 12.

    McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Mekonnen, Z. A., Riley, W. J. & Grant, R. F. 21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8.5 climate trajectory. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aabf28 (2018).

  • 14.

    Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).

    Article 
    CAS 

    Google Scholar 

  • 15.

    Turetsky, M. R. et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 4, 27–31 (2011).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Veraverbeke, S., Rogers, B. M. & Randerson, J. T. Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosciences 12, 3579–3601 (2015).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Hu, F. S. et al. Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ. 13, 369–377 (2015).

    Article 

    Google Scholar 

  • 18.

    Rogers, B. M., Balch, J. K., Goetz, S. J., Lehmann, C. E. R. & Turetsky, M. Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab6d3a (2020).

  • 19.

    Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).

    Article 

    Google Scholar 

  • 22.

    Rocha, A. V. et al. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environ. Res. Lett. 7, 044039 (2012).

    Article 

    Google Scholar 

  • 23.

    Chambers, S. D., Beringer, J., Randerson, J. T. & Chapin, F. S. III Fire effects on net radiation and energy partitioning: contrasting responses of tundra and boreal forest ecosystems. J. Geophys. Res. Atmos. https://doi.org/10.1029/2004jd005299 (2005).

  • 24.

    Genet, H. et al. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska. Environ. Res. Lett. 8, 045016 (2013).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).

    Article 

    Google Scholar 

  • 26.

    Johnstone, J. F., Hollingworth, T. N., Chapin, F. S. III & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).

    Article 

    Google Scholar 

  • 27.

    Christian, H. J. et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002jd002347 (2003).

  • 28.

    Cecil, D. J., Buechler, D. E. & Blakeslee, R. J. Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos. Res. 135, 404–414 (2014).

    Article 

    Google Scholar 

  • 29.

    Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529–534 (2017).

    Article 

    Google Scholar 

  • 30.

    Krause, A., Kloster, S., Wilkenskjeld, S. & Paeth, H. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. J. Geophys. Res. Biogeosci. 119, 312–322 (2014).

    Article 

    Google Scholar 

  • 31.

    Price, C. Lightning applications in weather and climate research. Surv. Geophys. 34, 755–767 (2013).

    Article 

    Google Scholar 

  • 32.

    Williams, E. R. Lightning and climate: a review. Atmos. Res. 76, 272–287 (2005).

    Article 

    Google Scholar 

  • 33.

    Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J. & Christian, H. J. Where are the lightning hotspots on Earth? Bull. Am. Meteorol. Soc. 97, 2051–2068 (2016).

    Article 

    Google Scholar 

  • 34.

    Price, C. & Rind, D. Possible implications of global climate change on global lightning distributions and frequencies. J. Geophys. Res. Atmos. 99, 10823–10831 (1994).

    Article 

    Google Scholar 

  • 35.

    Jayaratne, E. R. & Kuleshov, Y. The relationship between lightning activity and surface wet bulb temperature and its variation with latitude in Australia. Meteorol. Atmos. Phys. 91, 17–24 (2006).

    Article 

    Google Scholar 

  • 36.

    Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Romps, D. M. Evaluating the future of lightning in cloud-resolving models. Geophys. Res. Lett. 46, 14863–14871 (2019).

    Article 

    Google Scholar 

  • 38.

    Finney, D. L. et al. A projected decrease in lightning under climate change. Nat. Clim. Change 8, 210–213 (2018).

    Article 

    Google Scholar 

  • 39.

    Bieniek, P. A. et al. Lightning variability in dynamically downscaled simulations of Alaska’s present and future summer climate. J. Appl. Meteorol. Climatol. 59, 1139–1152 (2020).

    Article 

    Google Scholar 

  • 40.

    Price, C. & Rind, D. A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. Atmos. 97, 9919–9933 (1992).

    Article 

    Google Scholar 

  • 41.

    Reeve, N. & Toumi, R. Lightning activity as an indicator of climate change. Q. J. R. Meteorol. Soc. 125, 893–903 (1999).

    Article 

    Google Scholar 

  • 42.

    Petersen, W. A. & Rutledge, S. A. On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res. Atmos. 103, 14025–14040 (1998).

    Article 

    Google Scholar 

  • 43.

    Allen, D. J. & Pickering, K. E. Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J. Geophys. Res. Atmos. 107, ACH 15-1–ACH 15-21 (2002).

    Article 
    CAS 

    Google Scholar 

  • 44.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  • 45.

    Price, C. Global surface temperatures and the atmospheric electrical circuit. Geophys. Res. Lett. 20, 1363–1366 (1993).

    Article 

    Google Scholar 

  • 46.

    Michalon, N., Nassif, A., Saouri, T., Royer, J. F. & Pontikis, C. A. Contribution to the climatological study of lightning. Geophys. Res. Lett. 26, 3097–3100 (1999).

    Article 

    Google Scholar 

  • 47.

    Peterson, D., Wang, J., Ichoku, C. & Remer, L. A. Effects of lightning and other meteorological factors on fire activity in the North American boreal forest: implications for fire weather forecasting. Atmos. Chem. Phys. 10, 6873–6888 (2010).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Kasischke, E. S., Williams, D. & Barry, D. Analysis of the patterns of large fires in the boreal forest region of Alaska. Int. J. Wildland Fire 11, 131–144 (2002).

    Article 

    Google Scholar 

  • 49.

    Stocks, B. J. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. https://doi.org/10.1029/2001jd000484 (2002).

  • 50.

    Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).

    CAS 
    Article 

    Google Scholar 

  • 51.

    McGuire, A. D., Chapin, F. S., Walsh, J. E. & Wirth, C. Integrated regional changes in Arctic climate feedbacks: implications for the global climate system. Annu. Rev. Environ. Resour. 31, 61–91 (2006).

    Article 

    Google Scholar 

  • 52.

    Euskirchen, E. S., McGuire, A. D., Chapin, F. S. III, Yi, S. & Thompson, C. C. Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks. Ecol. Appl. 19, 1022–1043 (2009).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Higuera, P. E. et al. Frequent fires in ancient shrub tundra: implications of paleorecords for Arctic environmental change. PLoS ONE 3, e0001744 (2008).

    Article 
    CAS 

    Google Scholar 

  • 54.

    Trugman, A. et al. Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone. J. Adv. Model. Earth Syst. 8, 1180–1209 (2016).

    Article 

    Google Scholar 

  • 55.

    Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2012.0490 (2013).

  • 56.

    Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).

    Article 

    Google Scholar 

  • 57.

    Dissing, D. & Verbyla, D. L. Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation. Can. J. For. Res. 33, 770–782 (2003).

    Article 

    Google Scholar 

  • 58.

    Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755 (2014).

    Article 

    Google Scholar 

  • 59.

    Yi, S. H., Woo, M. K. & Arain, M. A. Impacts of peat and vegetation on permafrost degradation under climate warming. Geophys. Res. Lett. 34, L16504 (2007).

    Article 

    Google Scholar 

  • 60.

    Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. https://doi.org/10.1038/srep15865 (2015).

  • 61.

    Brown, D. R. N. et al. Landscape effects of wildfire on permafrost distribution in interior Alaska derived from remote sensing. Remote Sens. https://doi.org/10.3390/rs8080654 (2016).

  • 62.

    Walker, G. A world melting from the top down. Nature 446, 718–721 (2007).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Bonfils, C. J. W. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/7/1/015503 (2012).

  • 64.

    McConnell, J. R. et al. 20th-century industrial black carbon emissions altered Arctic climate forcing. Science 317, 1381–1384 (2007).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B. & Doney, S. C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl Acad. Sci. USA 107, 1295–1300 (2010).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Keuper, F. et al. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 13, 560–565 (2020).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science https://doi.org/10.1126/science.aam8328 (2018).

  • 68.

    Magi, B. I. Global lightning parameterization from CMIP5 climate model output. J. Atmos. Ocean. Technol. 32, 434–452 (2015).

    Article 

    Google Scholar 

  • 69.

    Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58–69 (2017).

    Article 

    Google Scholar 

  • 70.

    Orville, R. E., Huffines, G. R., Burrows, W. R. & Cummins, K. L. The North American Lightning Detection Network (NALDN)—analysis of flash data: 2001–09. Mon. Weather Rev. 139, 1305–1322 (2011).

    Article 

    Google Scholar 

  • 71.

    Virts, K. S., Wallace, J. M., Hutchins, M. L. & Holzworth, R. H. Highlights of a new ground-based, hourly global lightning climatology. Bull. Am. Meteorol. Soc. 94, 1381–1391 (2013).

    Article 

    Google Scholar 

  • 72.

    Pohjola, H. & Makela, A. The comparison of GLD360 and EUCLID lightning location systems in Europe. Atmos. Res. 123, 117–128 (2013).

    Article 

    Google Scholar 

  • 73.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 12 (IPCC, Cambridge Univ. Press, 2013).

  • 74.

    Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Chapin, F. S. et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Foley, J. A. Tipping points in the tundra. Science 310, 627–628 (2005).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).

    Article 

    Google Scholar 

  • 78.

    Mach, D. M. et al. Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res. 112, D09210 (2007).

    Google Scholar 

  • 79.

    Mackerras, D., Darveniza, M., Orville, R. E., Williams, E. R. & Goodman, S. J. Global lightning: total, cloud and ground flash estimates. J. Geophys. Res. Atmos. 103, 19791–19809 (1998).

    Article 

    Google Scholar 

  • 80.

    Farukh, M. A. & Hayasaka, H. Active forest fire occurrences in severe lightning years in Alaska. J. Nat. Disaster Sci. 33, 71–84 (2012).

    Article 

    Google Scholar 

  • 81.

    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar 

  • 82.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article 

    Google Scholar 

  • 83.

    Seeley, J. T. & Romps, D. M. The effect of global warming on severe thunderstorms in the United States. J. Clim. 28, 2443–2458 (2015).

    Article 

    Google Scholar 

  • 84.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    Article 

    Google Scholar 

  • 85.

    Chronis, T. G. et al. Global lightning activity from the ENSO perspective. Geophys. Res. Lett. 35, L19804 (2008).

    Article 

    Google Scholar 

  • 86.

    Satori, G., Williams, E. & Lemperger, I. Variability of global lightning activity on the ENSO time scale. Atmos. Res. 91, 500–507 (2009).

    Article 

    Google Scholar 

  • 87.

    Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 117, G04012 (2012).

    Article 
    CAS 

    Google Scholar 

  • 88.

    van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    Article 

    Google Scholar 

  • 89.

    Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Effectiveness of decontamination protocols when analyzing ancient DNA preserved in dental calculus

    Study reveals uncertainty in how much carbon the ocean absorbs over time