Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).
Google Scholar
Mishra, U. et al. Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/8/3/035020 (2013).
Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage. 5, 81–91 (2014).
Google Scholar
Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
Google Scholar
Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).
Google Scholar
Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
Google Scholar
Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
Google Scholar
McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).
Google Scholar
Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).
Google Scholar
Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl Acad. Sci. USA 112, 3752–3757 (2015).
Google Scholar
Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).
Google Scholar
McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).
Google Scholar
Mekonnen, Z. A., Riley, W. J. & Grant, R. F. 21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8.5 climate trajectory. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aabf28 (2018).
Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).
Google Scholar
Turetsky, M. R. et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 4, 27–31 (2011).
Google Scholar
Veraverbeke, S., Rogers, B. M. & Randerson, J. T. Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosciences 12, 3579–3601 (2015).
Google Scholar
Hu, F. S. et al. Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ. 13, 369–377 (2015).
Google Scholar
Rogers, B. M., Balch, J. K., Goetz, S. J., Lehmann, C. E. R. & Turetsky, M. Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab6d3a (2020).
Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
Google Scholar
Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011).
Google Scholar
Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).
Google Scholar
Rocha, A. V. et al. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environ. Res. Lett. 7, 044039 (2012).
Google Scholar
Chambers, S. D., Beringer, J., Randerson, J. T. & Chapin, F. S. III Fire effects on net radiation and energy partitioning: contrasting responses of tundra and boreal forest ecosystems. J. Geophys. Res. Atmos. https://doi.org/10.1029/2004jd005299 (2005).
Genet, H. et al. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska. Environ. Res. Lett. 8, 045016 (2013).
Google Scholar
Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).
Google Scholar
Johnstone, J. F., Hollingworth, T. N., Chapin, F. S. III & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).
Google Scholar
Christian, H. J. et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002jd002347 (2003).
Cecil, D. J., Buechler, D. E. & Blakeslee, R. J. Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos. Res. 135, 404–414 (2014).
Google Scholar
Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529–534 (2017).
Google Scholar
Krause, A., Kloster, S., Wilkenskjeld, S. & Paeth, H. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. J. Geophys. Res. Biogeosci. 119, 312–322 (2014).
Google Scholar
Price, C. Lightning applications in weather and climate research. Surv. Geophys. 34, 755–767 (2013).
Google Scholar
Williams, E. R. Lightning and climate: a review. Atmos. Res. 76, 272–287 (2005).
Google Scholar
Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J. & Christian, H. J. Where are the lightning hotspots on Earth? Bull. Am. Meteorol. Soc. 97, 2051–2068 (2016).
Google Scholar
Price, C. & Rind, D. Possible implications of global climate change on global lightning distributions and frequencies. J. Geophys. Res. Atmos. 99, 10823–10831 (1994).
Google Scholar
Jayaratne, E. R. & Kuleshov, Y. The relationship between lightning activity and surface wet bulb temperature and its variation with latitude in Australia. Meteorol. Atmos. Phys. 91, 17–24 (2006).
Google Scholar
Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).
Google Scholar
Romps, D. M. Evaluating the future of lightning in cloud-resolving models. Geophys. Res. Lett. 46, 14863–14871 (2019).
Google Scholar
Finney, D. L. et al. A projected decrease in lightning under climate change. Nat. Clim. Change 8, 210–213 (2018).
Google Scholar
Bieniek, P. A. et al. Lightning variability in dynamically downscaled simulations of Alaska’s present and future summer climate. J. Appl. Meteorol. Climatol. 59, 1139–1152 (2020).
Google Scholar
Price, C. & Rind, D. A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. Atmos. 97, 9919–9933 (1992).
Google Scholar
Reeve, N. & Toumi, R. Lightning activity as an indicator of climate change. Q. J. R. Meteorol. Soc. 125, 893–903 (1999).
Google Scholar
Petersen, W. A. & Rutledge, S. A. On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res. Atmos. 103, 14025–14040 (1998).
Google Scholar
Allen, D. J. & Pickering, K. E. Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J. Geophys. Res. Atmos. 107, ACH 15-1–ACH 15-21 (2002).
Google Scholar
IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).
Price, C. Global surface temperatures and the atmospheric electrical circuit. Geophys. Res. Lett. 20, 1363–1366 (1993).
Google Scholar
Michalon, N., Nassif, A., Saouri, T., Royer, J. F. & Pontikis, C. A. Contribution to the climatological study of lightning. Geophys. Res. Lett. 26, 3097–3100 (1999).
Google Scholar
Peterson, D., Wang, J., Ichoku, C. & Remer, L. A. Effects of lightning and other meteorological factors on fire activity in the North American boreal forest: implications for fire weather forecasting. Atmos. Chem. Phys. 10, 6873–6888 (2010).
Google Scholar
Kasischke, E. S., Williams, D. & Barry, D. Analysis of the patterns of large fires in the boreal forest region of Alaska. Int. J. Wildland Fire 11, 131–144 (2002).
Google Scholar
Stocks, B. J. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. https://doi.org/10.1029/2001jd000484 (2002).
Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).
Google Scholar
McGuire, A. D., Chapin, F. S., Walsh, J. E. & Wirth, C. Integrated regional changes in Arctic climate feedbacks: implications for the global climate system. Annu. Rev. Environ. Resour. 31, 61–91 (2006).
Google Scholar
Euskirchen, E. S., McGuire, A. D., Chapin, F. S. III, Yi, S. & Thompson, C. C. Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks. Ecol. Appl. 19, 1022–1043 (2009).
Google Scholar
Higuera, P. E. et al. Frequent fires in ancient shrub tundra: implications of paleorecords for Arctic environmental change. PLoS ONE 3, e0001744 (2008).
Google Scholar
Trugman, A. et al. Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone. J. Adv. Model. Earth Syst. 8, 1180–1209 (2016).
Google Scholar
Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2012.0490 (2013).
Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).
Google Scholar
Dissing, D. & Verbyla, D. L. Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation. Can. J. For. Res. 33, 770–782 (2003).
Google Scholar
Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755 (2014).
Google Scholar
Yi, S. H., Woo, M. K. & Arain, M. A. Impacts of peat and vegetation on permafrost degradation under climate warming. Geophys. Res. Lett. 34, L16504 (2007).
Google Scholar
Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. https://doi.org/10.1038/srep15865 (2015).
Brown, D. R. N. et al. Landscape effects of wildfire on permafrost distribution in interior Alaska derived from remote sensing. Remote Sens. https://doi.org/10.3390/rs8080654 (2016).
Walker, G. A world melting from the top down. Nature 446, 718–721 (2007).
Google Scholar
Bonfils, C. J. W. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/7/1/015503 (2012).
McConnell, J. R. et al. 20th-century industrial black carbon emissions altered Arctic climate forcing. Science 317, 1381–1384 (2007).
Google Scholar
Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B. & Doney, S. C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl Acad. Sci. USA 107, 1295–1300 (2010).
Google Scholar
Keuper, F. et al. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 13, 560–565 (2020).
Google Scholar
Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science https://doi.org/10.1126/science.aam8328 (2018).
Magi, B. I. Global lightning parameterization from CMIP5 climate model output. J. Atmos. Ocean. Technol. 32, 434–452 (2015).
Google Scholar
Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58–69 (2017).
Google Scholar
Orville, R. E., Huffines, G. R., Burrows, W. R. & Cummins, K. L. The North American Lightning Detection Network (NALDN)—analysis of flash data: 2001–09. Mon. Weather Rev. 139, 1305–1322 (2011).
Google Scholar
Virts, K. S., Wallace, J. M., Hutchins, M. L. & Holzworth, R. H. Highlights of a new ground-based, hourly global lightning climatology. Bull. Am. Meteorol. Soc. 94, 1381–1391 (2013).
Google Scholar
Pohjola, H. & Makela, A. The comparison of GLD360 and EUCLID lightning location systems in Europe. Atmos. Res. 123, 117–128 (2013).
Google Scholar
Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 12 (IPCC, Cambridge Univ. Press, 2013).
Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).
Google Scholar
Chapin, F. S. et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).
Google Scholar
Foley, J. A. Tipping points in the tundra. Science 310, 627–628 (2005).
Google Scholar
Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).
Google Scholar
Mach, D. M. et al. Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res. 112, D09210 (2007).
Mackerras, D., Darveniza, M., Orville, R. E., Williams, E. R. & Goodman, S. J. Global lightning: total, cloud and ground flash estimates. J. Geophys. Res. Atmos. 103, 19791–19809 (1998).
Google Scholar
Farukh, M. A. & Hayasaka, H. Active forest fire occurrences in severe lightning years in Alaska. J. Nat. Disaster Sci. 33, 71–84 (2012).
Google Scholar
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Google Scholar
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
Google Scholar
Seeley, J. T. & Romps, D. M. The effect of global warming on severe thunderstorms in the United States. J. Clim. 28, 2443–2458 (2015).
Google Scholar
van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).
Google Scholar
Chronis, T. G. et al. Global lightning activity from the ENSO perspective. Geophys. Res. Lett. 35, L19804 (2008).
Google Scholar
Satori, G., Williams, E. & Lemperger, I. Variability of global lightning activity on the ENSO time scale. Atmos. Res. 91, 500–507 (2009).
Google Scholar
Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 117, G04012 (2012).
Google Scholar
van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).
Google Scholar
Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).
Google Scholar
Source: Ecology - nature.com