McPhaden, M. J. & Busalacchi, A. J. The tropical ocean-global atmosphere observing system: A Decade of progress research. Oceans. https://doi.org/10.1029/97JC02906 (1998).
Osland, M. J. et al. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol. Monogr. 87(2), 341–359 (2017).
Google Scholar
Adame, M. F. et al. Mangroves in arid regions: Ecology, threats, and opportunities. Estuar. Coast. Shelf Sci. 1, 106796 (2020).
Asbridge, E. F. et al. Assessing the distribution and drivers of mangrove dieback in Kakadu National Park, Northern Australia. Estuar. Coast. Shelf Sci. 228, 106353 (2019).
Google Scholar
Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15(5), 257–265 (2017).
Google Scholar
Spalding, M. D. et al. The role of ecosystems in coastal protection: adapting to climate change and coastal hazards. Ocean. Coast. Manag. 90, 50–57 (2014).
Sippo, J. Z., Lovelock, C. E., Santos, I. R., Sanders, C. J. & Maher, D. T. Mangrove mortality in a changing climate: An overview. Estuar. Coast. Shelf Sci. 215, 241–249 (2018).
Google Scholar
Mafi-Gholami, D., Zenner, E. K., & Jaafari, A. Mangrove regional feedback to sea level rise and drought intensity at the end of the 21st century. Ecol. Indic. 110, 105972 (2020).
Google Scholar
Jump, A. S., & Penuelas J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8(9), 1010–1020 (2005).
Google Scholar
Jimenez, J. A., Lugo, A. E. & Cintron, G. Tree mortality in mangrove forests. Biotropica 17, 177–185 (1985).
Google Scholar
Xie, S.-P. et al. Indo-western pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci. 33(4), 411–432 (2016).
Google Scholar
Hamlington, B. D. et al. An ongoing shift in Pacific Ocean sea level. J. Geophys/ Res. Oceans 121, 5084–5097 (2016).
Google Scholar
Merrifield, M. A., Thompson, P. R. & Lander, M. Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett. 39, 2–6 (2012).
Google Scholar
Godfrey, J. S. & Ridgway, K. R. The large-scale environment of the poleward-flowing Leeuwin Current, Western Australia: Longshore steric height gradients, wind stresses and geostrophic flow. J. Phys. Oceanogr. 15, 481–495 (1985).
Google Scholar
Drexler, J. Z. & Ewel, K. C. Wetland complex linked references are available on JSTOR for this article: Effect of the 1997–1998 ENSO-related drought on hydrology and salinity in a Micronesian wetland complex. Estuaries 24, 347–356 (2001).
Google Scholar
Duke, N. C. et al. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: A severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshw. Res. 68(10), 1816–1829 (2017).
Google Scholar
Cai, W. et al. More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature 488, 365–369 (2012).
Google Scholar
Wilson, S. G., Taylor, J. G., & Pearce, A. F. The Seasonal Aggregation of Whale Sharks at Ningaloo Reef, Western Australia: Currents, Migrations and the El Niño/Southern Oscillation. Environmental Biology of Fishes. https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1023/A:1011069914753&casa_token=55v4NHJmcDcAAAAA:owpASeBazqNzQzH7Z9xJI0BOtHzNZMvjTiJHRjLGIFCWzhyiWwMvYJUU8cloH46JDWCSZ7XOhu_CZuzZ0w. (2001).
Lovelock, C. E., Feller, I. C., Reef, R., Hickey, S. & Ball, M. C. Mangrove dieback during fluctuating sea levels. Sci. Rep. 1, 1–8 (2017).
Giri, C. Observation and monitoring of mangrove forests using remote sensing: Opportunities and challenges. Remot. Sens. 8, 783 (2016).
Google Scholar
Fatoyinbo, T. E., Simard, M., Washington-Allen, R. A. & Shugart, H. H. Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove, forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. J. Geophys. Res. Biogeosci. 113, 1–13 (2008).
Google Scholar
Rodriguez, W., Feller, I. C. & Cavanaugh, K. C. Spatio-temporal changes of a mangrove saltmarsh ecotone in the northeastern coast of Florida, USA. Glob. Ecol. Conserv. 7, 245–261 (2016).
Google Scholar
Bureau of Meteorology. Record-Breaking La Niña Events. Australian Government. http://www.bom.gov.au/climate/enso/history/La-Nina-2010-12.pdf (2012).
Jensen, J. R. et al. The measurement of mangrove characteristics in southwest Florida using spot multispectral data. Geocarto Int. 6, 13–21 (1991).
Google Scholar
Eslami-Andargoli, L., Dale, P., Sipe, N. & Chaseling, J. Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland, Australia. Estuar. Coast. Shelf Sci. 85, 292–298 (2009).
Google Scholar
Hicks, W., Fitzpatrick, R. W., & Bowman, G. (2003) Managing coastal acid sulfate soils: the East Trinity example. in Advances in regolith: Proceedings of the CRC LEME regional regolith symposia. CRC LEME, Bentley 174–177.
Harris, N. L. et al. Using spatial statistics to identify emerging hot spots of forest loss. Environ. Res. Lett. 12, 024012 (2017).
Google Scholar
Bryan-Brown, D. N. et al. Global trends in mangrove forest fragmentation. Sci. Rep. 10(1), 7117 (2020).
Google Scholar
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the anthropocene. Science 359(6371), 80–83 (2018).
Wang, H. J., Zhang, R. H., Cole, J. & Chavez, F. El Niño and the related phenomenon southern oscillation (ENSO): The largest signal in interannual climate variation. Proc. Natl. Acad. Sci. USA. 96(20), 11071–11072 (1999).
Google Scholar
Berg, A. et al. Land-atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Chang. 6, 869–874 (2016).
Google Scholar
Perry, S. J., McGregor, S., Gupta, A. S. & England, M. H. Future changes to El Niño-southern oscillation temperature and precipitation teleconnections. Geophys. Res. Lett. 44(20), 10608–10616 (2017).
Google Scholar
Osland, M. J. et al. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob. Change Biol. 22, 1–11 (2016).
Google Scholar
Jentsch, A. & Beierkuhnlein, C. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. C.R. Geosci. 340, 621–628 (2008).
Google Scholar
Chander, G., Markham, B. L. & Helder, D. L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 113, 893–903 (2009).
Google Scholar
Landsat 7 (L7) Data Users Handbook. USGS. https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1927_L7_Data_Users_Handbook-v2.pdf. (2009).
Landsat 8 (L8) Data Users Handbook. USGS. https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1574_L8_Data_Users_Handbook-v5.0.pdf. (2009).
Story, M. & Congalton, R. G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote. Sens. 52, 397–399 (1986).
Moore, C. et al. Improving essential fish habitat designation to support sustainable ecosystem-based fisheries management. Mar. Policy 69, 32–41 (2016).
Burnham, K. P., & Anderson, R. A practical information-theoretic approach. in Model Selection and Multimodel Inference 2. http://sutlib2.sut.ac.th/sut_contents/H79182.pdf.
Burnham, K. P., & Anderson, D. R. Practical use of the information-theoretic approach. in Model Selection and Inference: A Practical Information-Theoretic Approach (eds. Burnham K. P. & Anderson D. R.) 75–117 (New York, NY, Springer, 1998).
Cornforth, W. A., Fatoyinbo, T. E., Freemantle, T. P. & Pettorelli, N. Advanced land observing satellite phased array type L-Band SAR (ALOS PALSAR) to inform the conservation of mangroves: Sundarbans as a case study. Remot. Sens. 5, 224–237 (2013).
Google Scholar
Giri, C., Pengra, B., Zhu, Z., Singh, A. & Tieszen, L. L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 73, 91–100 (2007).
Google Scholar
Long, J., Giri, C., Primavera, J. & Trivedi, M. Damage and recovery assessment of the Philippines ’ mangroves following Super Typhoon Haiyan. MPB 109, 734–743 (2016).
Google Scholar
Satyanarayana, B., Mohamad, K. A., Idris, I. F., Husain, M.-L. & Dahdouh-Guebas, F. Assessment of mangrove vegetation based on remote sensing and ground-truth measurements at Tumpat, Kelantan Delta, East Coast of Peninsular Malaysia. Int. J. Remot. Sens. 32, 1635–1650 (2011).
Google Scholar
Almahasheer, H., Aljowair, A., Duarte, C. M. & Irigoien, X. Decadal stability of red sea mangroves. Estuar. Coast. Shelf Sci. 169, 164–172 (2016).
Google Scholar
Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).
Google Scholar
Source: Ecology - nature.com