in

Stock delineation of striped snakehead, Channa striata using multivariate generalised linear models with otolith shape and chemistry data

  • 1.

    Carlson, A. K., Phelps, Q. E. & Graeb, B. D. S. Chemistry to conservation: Using otoliths to advance recreational and commercial fisheries management. J. Fish Biol. 90, 505–527 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Ward, R. D. Genetics in fisheries management. Hydrobiologia 420, 191–201 (2000).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Tracey, S. R., Lyle, J. M. & Duhamel, G. Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish. Res. 77, 138–147 (2006).

    Article 

    Google Scholar 

  • 4.

    Ferguson, G. J., Ward, T. M. & Gillanders, B. M. Otolith shape and elemental composition: Complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fish. Res. 110, 75–83 (2011).

    Article 

    Google Scholar 

  • 5.

    Campana, S. E. & Casselman, J. M. Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci. 50(5), 1062-1083 (1993).

    Article 

    Google Scholar 

  • 6.

    Begg, G. A., Overholtz, W. J. & Munroe, N. J. The use of internal otolith morphometrics for identification of haddock (Melanogrammus aeglefinus) stocks on Georges Bank. Fish. Bull. 99, 1–1 (2001).

    Google Scholar 

  • 7.

    Miyan, K., Khan, M. A., Patel, D. K., Khan, S. & Ansari, N. G. Truss morphometry and otolith microchemistry reveal stock discrimination in Clarias batrachus (Linnaeus, 1758) inhabiting the Gangetic river system. Fish. Res. 173, 294–302 (2016).

    Article 

    Google Scholar 

  • 8.

    Nazir, A. & Khan, M. A. Spatial and temporal variation in otolith chemistry and its relationship with water chemistry: Stock discrimination of Sperata aor. Ecol. Freshw. Fish 28, 499–511 (2019).

    Article 

    Google Scholar 

  • 9.

    Bird, J. L., Eppler, D. T. & Checkley, D. M. Jr. Comparisons of herring otoliths using Fourier series shape analysis. Can. J. Fish. Aquat. Sci. 43(6), 1228-1234 (1986).

    Article 

    Google Scholar 

  • 10.

    Castonguay, M., Simard, P. & Gagnon, P. Usefulness of Fourier analysis of otolith shape for Atlantic Mackerel (Scomber scombrus) stock discrimination. Can. J. Fish. Aquat. Sci. 48(2), 296-302 (1991).

    Article 

    Google Scholar 

  • 11.

    Friedland, K. D. & Reddin, D. G. Use of otolith morphology in stock discriminations of Atlantic Salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 51(1), 91-98 (1994).

    Article 

    Google Scholar 

  • 12.

    Vignon, M. & Morat, F. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar. Ecol. Prog. Ser. 411, 231–241 (2010).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Campana, S. E., Chouinard, G. A., Hanson, J. M., Fréchet, A. & Brattey, J. Otolith elemental fingerprints as biological tracers of fish stocks. Fish. Res. 46, 343–357 (2000).

    Article 

    Google Scholar 

  • 14.

    Elsdon, T. S. & Gillanders, B. M. Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Rev. Fish Biol. Fish. 13, 217–235 (2003).

    Article 

    Google Scholar 

  • 15.

    Stransky, C. Geographic variation of golden redfish (Sebastes marinus) and deep-sea redfish (S. mentella) in the North Atlantic based on otolith shape analysis. ICES J. Mar. Sci. 62, 1691–1698 (2005).

    Article 

    Google Scholar 

  • 16.

    Grammer, G. L. et al. Coupling biogeochemical tracers with fish growth reveals physiological and environmental controls on otolith chemistry. Ecol. Monogr. 87, 487–507 (2017).

    Article 

    Google Scholar 

  • 17.

    Izzo, C., Reis-Santos, P. & Gillanders, B. M. Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation. Fish Fish. 19, 441–454 (2018).

    Article 

    Google Scholar 

  • 18.

    Elsdon, T. S. & Gillanders, B. M. Fish otolith chemistry influenced by exposure to multiple environmental variables. J. Exp. Mar. Biol. Ecol. 313, 269–284 (2004).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Khan, M. A., Miyan, K., Khan, S., Patel, D. K. & Ansari, G. Studies on the elemental profile of otoliths and truss network analysis for stock discrimination of the threatened stinging catfish Heteropneustes fossilis (Bloch 1794) from the Ganga river and its tributaries. Zool. Stud. 51, 1195–1206 (2012).

    Google Scholar 

  • 20.

    Miyan, K., Khan, M. A. & Khan, S. Stock structure delineation using variation in otolith chemistry of snakehead, Channa punctata (Bloch, 1793), from three Indian rivers. J. Appl. Ichthyol. 30, 881–886 (2014).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Miyan, K., Khan, M. A., Patel, D. K., Khan, S. & Prasad, S. Otolith fingerprints reveal stock discrimination of Sperata seenghala inhabiting the Gangetic river system. Ichthyol. Res. 63, 294–301 (2016).

    Article 

    Google Scholar 

  • 22.

    Fowler, A. M., Macreadie, P. I., Bishop, D. P. & Booth, D. J. Using otolith microchemistry and shape to assess the habitat value of oil structures for reef fish. Mar. Environ. Res. 106, 103–113 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Schilling, H. T. et al. Evaluating estuarine nursery use and life history patterns of Pomatomus saltatrix in eastern Australia. Mar. Ecol. Prog. Ser. 598, 187–199 (2018).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Biolé, F. G. et al. Fish stocks of Urophycis brasiliensis revealed by otolith fingerprint and shape in the Southwestern Atlantic Ocean. Estuar. Coast. Shelf Sci. 229, 106406 (2019).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Maguffee, A. C., Reilly, R., Clark, R. & Jones, M. L. Examining the potential of otolith chemistry to determine natal origins of wild Lake Michigan Chinook salmon. Can. J. Fish. Aquat. Sci. 76(11), 2035-2044 (2019).

    Article 

    Google Scholar 

  • 26.

    Tanner, S. E., Vasconcelos, R. P., Cabral, H. N. & Thorrold, S. R. Testing an otolith geochemistry approach to determine population structure and movements of European hake in the northeast Atlantic Ocean and Mediterranean Sea. Fish. Res. 125–126, 198–205 (2012).

    Article 

    Google Scholar 

  • 27.

    Andrade, H. et al. Ontogenetic movements of cod in Arctic fjords and the Barents Sea as revealed by otolith microchemistry. Polar Biol. 43, 409–421 (2020).

    Article 

    Google Scholar 

  • 28.

    Warton, D. I. Why you cannot transform your way out of trouble for small counts. Biometrics 74, 362–368 (2018).

    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 29.

    Foster, S. D. & Bravington, M. V. A Poisson-Gamma model for analysis of ecological non-negative continuous data. Environ. Ecol. Stat. 20, 533–552 (2013).

    MathSciNet 
    Article 

    Google Scholar 

  • 30.

    Taylor, L. R. Aggregation, variance and the mean. Nature 189, 732–735 (1961).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Kendal, R. L., Coolen, I. & Laland, K. N. The role of conformity in foraging when personal and social information conflict. Behav. Ecol. 15, 269–277 (2004).

    Article 

    Google Scholar 

  • 32.

    Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).

    Article 

    Google Scholar 

  • 33.

    Warton, D. I., Foster, S. D., De’ath, G., Stoklosa, J. & Dunstan, P. K. Model-based thinking for community ecology. Plant Ecol. 216, 669–682 (2015).

    Article 

    Google Scholar 

  • 34.

    Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund– an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).

    Article 

    Google Scholar 

  • 35.

    Niku, J., Warton, D. I., Hui, F. K. C. & Taskinen, S. Generalized linear latent variable models for multivariate count and biomass data in ecology. J. Agric. Biol. Environ. Stat. 22, 498–522 (2017).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 36.

    Dunn, P. K. & Smyth, G. K. Randomized quantile residuals. J. Comput. Graph. Stat. 5, 236–244 (1996).

    Google Scholar 

  • 37.

    Dunn, P. K. & Smyth, G. K. Chapter 8: generalized linear models: Diagnostics. In Generalized Linear Models With Examples in R (eds. Dunn, P. K. & Smyth, G. K.) 297–331 (Springer, 2018). https://doi.org/10.1007/978-1-4419-0118-7_8.

  • 38.

    Hui, F. K. C., Taskinen, S., Pledger, S., Foster, S. D. & Warton, D. I. Model-based approaches to unconstrained ordination. Methods Ecol. Evol. 6, 399–411 (2015).

    Article 

    Google Scholar 

  • 39.

    Hui, F. K. C. Boral–Bayesian ordination and regression analysis of multivariate abundance Data in r. Methods Ecol. Evol. 7, 744–750 (2016).

    Article 

    Google Scholar 

  • 40.

    Popovic, G. C., Warton, D. I., Thomson, F. J., Hui, F. K. C. & Moles, A. T. Untangling direct species associations from indirect mediator species effects with graphical models. Methods Ecol. Evol. 10, 1571–1583 (2019).

    Article 

    Google Scholar 

  • 41.

    Jones, C. M., Palmer, M. & Schaffler, J. J. Beyond Zar: The use and abuse of classification statistics for otolith chemistry. J. Fish Biol. 90, 492–504 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Rahman, M. A. & Awal, S. Development of captive breeding, seed production and culture techniques of snakehead fish for species conservation and sustainable aquaculture. Int. J. Adv. Agric. Environ. Eng. 3, 117–120 (2016).

    Google Scholar 

  • 43.

    Khan, M. A., Khan, S. & Miyan, K. Stock identification of the Channa striata inhabiting the Gangetic River System using Truss Morphometry. Russ. J. Ecol. 50, 391–396 (2019).

    Article 

    Google Scholar 

  • 44.

    Phen, C., Thang, T. B., Baran, E. & Vann, L. S. Biological reviews of important Cambodian fish species, based on FishBase 2004. Volume 1: Channa striata; Channa micropeltes; Barbonymus altus; Barbonymus gonionotus; Cyclocheilichthys apogon; Cyclocheilichthys enoplos; Henicorhynchus lineatus; Henicorhynchus siamensis; Pangasius hypophthalmus; Pangasius djambal. (WorldFish Center and Inland Fisheries Research and Development Institute, 2005).

  • 45.

    War, M. & Haniffa, M. A. Growth and survival of larval snakehead Channa striatus (Bloch, 1793) fed different live feed organisms. Turk. J. Fish. Aquat. Sci. 11, 523–528 (2011).

    Google Scholar 

  • 46.

    Cagauan, A. G. Exotic aquatic species introduction in the Philippines for aquaculture—A threat to biodiversity or a boon to the economy?. J. Environ. Sci. Manag. 10, 48–62 (2007).

    Google Scholar 

  • 47.

    Jayaram, K. C. The Freshwater Fishes of the Indian Region (Narendra Publishing House, 1999).

    Google Scholar 

  • 48.

    Talwar, P. K. & Jhingran, A. G. Inland fishes of India and adjacent countries Vol. 2 (CRC Press, 1991).

    Google Scholar 

  • 49.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).

  • 50.

    Libungan, L. A. & Pálsson, S. ShapeR: An R package to study otolith shape variation among fish populations. PLoS ONE 10, e0121102 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 51.

    Graps, A. An introduction to wavelets. IEEE Comput. Sci. Eng. 2, 50–61 (1995).

    Article 

    Google Scholar 

  • 52.

    Turan, C. The use of otolith shape and chemistry to determine stock structure of Mediterranean horse mackerel Trachurus mediterraneus (Steindachner). J. Fish Biol. 69, 165–180 (2006).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Oksanen, J. vegan: Community Ecology Package. (2019).

  • 54.

    Venables, W. N. & Ripley, B. D. Modern applied statistics with S-PLUS (Springer Science & Business Media, 2013).

    Google Scholar 

  • 55.

    Warton, D. I. Raw data graphing: An informative but under-utilized tool for the analysis of multivariate abundances. Austral. Ecol. 33, 290–300 (2008).

    Article 

    Google Scholar 

  • 56.

    Begg, G. A., Friedland, K. D. & Pearce, J. B. Stock identification and its role in stock assessment and fisheries management: An overview. Fish. Res. 43, 1–8 (1999).

    Article 

    Google Scholar 

  • 57.

    Sengupta, B. Water Quality Status of Yamuna River (1999-2005), Assessment and Development of River Basin Series: ADSORBS/41/2006-07. Cent. Pollut. Control Board Delhi (2006).

  • 58.

    Bhardwaj, R., Gupta, A. & Garg, J. K. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Sci. 31, 52–66 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Negative emissions, positive economy

    Individual US diets show wide variation in water scarcity footprints