in

A paradoxical knowledge gap in science for critically endangered fishes and game fishes during the sixth mass extinction

  • 1.

    N. United, World Population Prospects 2019. Retrived from https://population.un.org/wpp/Download/Standard/Population/ (2020) (available at https://population.un.org/wpp/Download/Standard/Population/).

  • 2.

    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. U. S. A. 114, E6089–E6096 (2017).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Cincotta, R. P., Wisnewski, J. & Engelman, R. Human population in the biodiversity hotspots. Nature 404, 990–992 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    McKee, J. K., Sciulli, P. W., David Fooce, C. & Waite, T. A. Forecasting global biodiversity threats associated with human population growth. Biol. Conserv. 115, 161–164 (2004).

    Article 

    Google Scholar 

  • 5.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science (80-) 344, 1246752–1246752 (2014).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Malhi, Y. The concept of the anthropocene. 42 (2017).

  • 7.

    Crutzen, P. J. Geology of mankind. Nature 415, 23 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 8.

    Zalasiewicz, J. et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quat. Int. 1, 1. https://doi.org/10.1016/j.quaint.2014.11.045 (2014).

    Article 

    Google Scholar 

  • 9.

    Dirzo, R. et al. Defaunation in the anthropocene. Science (80-) 345, 401–406 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Ceballos, G., Ehrlich, P. R., García, A. The sixth extinction crisis loss of animal populations and species conservation biology view project cost-effective conservation planning view project the sixth extinction crisis loss of animal populations and species (2010) (available at https://www.researchgate.net/publication/266231196).

  • 12.

    Leakey, R. E. & Lewin, R. The sixth extinction: Patterns of life and the future of Humankind (Doubleday, 1995).

    Google Scholar 

  • 13.

    Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science (80-) 269, 347–350 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Burkhead, N. M. Extinction rates in North American freshwater fishes, 1900–2010. Bioscience 62, 798–808 (2012).

    Article 

    Google Scholar 

  • 15.

    Bornmann, L. & Mutz, R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. J. Assoc. Inf. Sci. Technol. 66, 2215–2222 (2015).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Evans, J. A. Future science. Science (80-). 342, 44–45 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Fortunato, S. et al. Science of science. Science (80-). 359, 1. https://doi.org/10.1126/science.aao0185 (2018).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Williams, D. R., Balmford, A. & Wilcove, D. S. The past and future role of conservation science in saving biodiversity. Conserv. Lett. 13, e12720 (2020).

    Article 

    Google Scholar 

  • 19.

    Bolam, F. C. et al. How many bird and mammal extinctions has recent conservation action prevented?. Conserv. Lett. 1, 1 (2020).

    Google Scholar 

  • 20.

    Groves, C. R., Jensen, D. B., Valutis, L. L., Redford, K. H., Shaffer, M. L., Scott, J. M., Baumgartner, J. V., Higgins, J. V., Beck, M. W., & Anderson, M. G. Planning for biodiversity conservation: Putting conservation science into practice. A seven-step framework for developing regional plans to conserve biological diversity, based upon principles of conservation biology and ecology, is being used extensively by the nature conservancy to identify priority areas for conservation” (Oxford Academic, 2002). https://doi.org/10.1641/0006-3568(2002)052[0499:PFBCPC]2.0.CO;2.

  • 21.

    Syed, S., Borit, M. & Spruit, M. Narrow lenses for capturing the complexity of fisheries: A topic analysis of fisheries science from 1990 to 2016. Fish Fish. 19, 643–661 (2018).

    Article 

    Google Scholar 

  • 22.

    Aksnes, D. W. & Browman, H. I. An overview of global research effort in fisheries science. ICES J. Mar. Sci. 73, 1004–1011 (2016).

    Article 

    Google Scholar 

  • 23.

    F. Natale, G. Fiore, J. Hofherr, Mapping the research on aquaculture. A bibliometric analysis of aquaculture literature. Scientometrics. 90, 983–999 (2012).

  • 24.

    Donaldson, M. R. et al. Contrasting global game fish and non-game fish species. Fisheries 36, 385–397 (2011).

    Article 

    Google Scholar 

  • 25.

    Konno, K. et al. Ignoring non-English-language studies may bias ecological meta-analyses. Ecol. Evol. 10, 6373–6384 (2020).

    Article 

    Google Scholar 

  • 26.

    Nuñez, M. A. & Amano, T. Monolingual searches can limit and bias results in global literature reviews. Nat. Ecol. Evol. 4, 2000933 (2021).

    Google Scholar 

  • 27.

    Stefanoudis, P. V. et al. Turning the tide of parachute science. Curr. Biol. 31, 161–185 (2021).

    Article 

    Google Scholar 

  • 28.

    Gossa, C., Fisher, M. & Milner-Gulland, E. J. The research-implementation gap: How practitioners and researchers from developing countries perceive the role of peer-reviewed literature in conservation science. Oryx 49, 80–87 (2015).

    Article 

    Google Scholar 

  • 29.

    Bawa, K. S. et al. Opinion: Envisioning a biodiversity science for sustaining human well-being. Proc. Natl. Acad. Sci. 117, 202018436 (2020).

    Article 

    Google Scholar 

  • 30.

    Cooke, S. J. & Cowx, I. G. The role of recreational fishing in global fish crises. Bioscience 54, 857 (2004).

    Article 

    Google Scholar 

  • 31.

    Fleishman, E., Murphy, D. D. & Brussard, P. F. A new method for selection of umbrella species for conservation planning. Ecol. Appl. 10, 569–579 (2000).

    Article 

    Google Scholar 

  • 32.

    Runge, C. A. et al. Single species conservation as an umbrella for management of landscape threats. PLoS ONE 14, e0209619 (2019).

    CAS 
    Article 

    Google Scholar 

  • 33.

    van Rees, C. B. et al. Safeguarding freshwater life beyond 2020: Recommendations for the new global biodiversity framework from the European experience. Conserv. Lett. https://doi.org/10.1111/conl.12771 (2020).

    Article 

    Google Scholar 

  • 34.

    World Wildlife Fund for Nature, “The World’s Forgotten Fishes” (2021), (available at www.panda.org).

  • 35.

    Novacek, M. J. Engaging the public in biodiversity issues. Proc. Natl. Acad. Sci. U. S. A. 105, 11571–11578 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Gerber, L. R. et al. Endangered species recovery: A resource allocation problem. Science (80-). 362, 284–286 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Restani, M. & Marzluff, J. M. Funding extinction? Biological needs and political realities in the allocation of resources to endangered species recovery. Bioscience 52, 169–177 (2002).

    Article 

    Google Scholar 

  • 38.

    McClenachan, L., Cooper, A. B., Carpenter, K. E. & Dulvy, N. K. Extinction risk and bottlenecks in the conservation of charismatic marine species. Conserv. Lett. 5, 73–80 (2012).

    Article 

    Google Scholar 

  • 39.

    Arlettaz, R. et al. From publications to public actions: When conservation biologists bridge the gap between research and implementation. Bioscience 60, 835–842 (2010).

    Article 

    Google Scholar 

  • 40.

    McNie, E. C. Reconciling the supply of scientific information with user demands: An analysis of the problem and review of the literature. Environ. Sci. Policy. 10, 17–38 (2007).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Brewer, G. D., & Stern, P. C. Decision Making for the Environment: Social and Behavioral Science Research Priorities (National Academies Press, 2005).

  • 42.

    Sunderland, T., Sunderland-Groves, J., Shanley, P. & Campbell, B. Bridging the gap: How can information access and exchange between conservation biologists and field practitioners be improved for better conservation outcomes?. Biotropica 41, 549–554 (2009).

    Article 

    Google Scholar 

  • 43.

    Steven, R., Castley, J. G. & Buckley, R. Tourism revenue as a conservation tool for threatened birds in protected areas. PLoS ONE 8, e62598 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 44.

    Joseph, L. N., Maloney, R. F. & Possingham, H. P. Optimal allocation of resources among threatened species: A project prioritization protocol. Conserv. Biol. 23, 328–338 (2009).

    Article 

    Google Scholar 

  • 45.

    Christie, A. P. et al. Poor availability of context-specific evidence hampers decision-making in conservation. Biol. Conserv. 248, 108666 (2020).

    Article 

    Google Scholar 

  • 46.

    International Union for Conservation of Nature (IUCN), International Union for Conservation of Nature (2018), (available at http://www.iucnredlist.org).

  • 47.

    International Game Fish Association (IGFA), International game fish world record list (2018), (available at http://www.igfa.org/records.asp).

  • 48.

    Froese, R., & Pauly, D. FishBase. World Wide Web Electron. Publ. (2019), (available at www.fishbase.org).

  • 49.

    R Core Team, R: a language and environment for statistical computing (2018).

  • 50.

    Aria, M. & Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 11, 959–975 (2017).

    Article 

    Google Scholar 

  • 51.

    Sonderegger, D. L. Significant zero crossings (2020).

  • 52.

    Hyndam, R., Athanasopoulos, G., Caceres, G., O’Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., & Yasmeen, F. Forecast: Forecasting functions for time series and linear models (2020).

  • 53.

    Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 27, 1–22 (2008).

    Article 

    Google Scholar 

  • 54.

    Jenks, G. F. & Caspall, F. C. Error on choroplethic maps: Definition, measurement, reduction. Ann. Assoc. Am. Geogr. 61, 217–244 (1971).

    Article 

    Google Scholar 

  • 55.

    ESRI, ArcGIS Desktop: Release 10.7.1 (2019).


  • Source: Ecology - nature.com

    Publisher Correction: Evolutionary assembly of flowering plants into sky islands

    President Reif urges two-track strategy to achieve global climate goals in 30 years