in

The hierarchy of root branching order determines bacterial composition, microbial carrying capacity and microbial filtering

  • 1.

    Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. N. Phytol. 206, 1196–1206 (2015).

    Article 

    Google Scholar 

  • 2.

    Feng, H. et al. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting Rhizobacteria Bacillus amyloliquefaciens SQR9. Mol. Plant Microbe Interact. 31, 995–1005 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Dennis, P. G., Miller, A. J. & Hirsch, P. R. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol. Ecol. 72, 313–327 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470–480 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Schreiter, S. et al. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front. Microbiol. 5, 144 (2014).

  • 8.

    Zhang, N. et al. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374, 689–700 (2014).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Yang, C.-H. & Crowley, D. E. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol. 66, 345 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    DeAngelis, K. M. et al. Selective progressive response of soil microbial community to wild oat roots. ISME J. 3, 168–178 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Shi, S. et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. mBio 6, e00746–00715 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Lu, T. et al. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6, 231 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Mei, C. & Flinn, B. S. The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat. Biotechnol. 4, 81–95 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Hijri, M. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26, 209–214 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Waschkies, C., Schropp, A. & Marschner, H. Relations between grapevine replant disease and root colonization of grapevine (Vitis sp.) by fluorescent pseudomonads and endomycorrhizal fungi. Plant Soil 162, 219–227 (1994).

    Article 

    Google Scholar 

  • 17.

    Benizri, E. et al. Replant diseases: bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biol. Biochem. 37, 1738–1746 (2005).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Pankhurst, C. E. et al. Management practices to improve soil health and reduce the effects of detrimental soil biota associated with yield decline of sugarcane in Queensland, Australia. Soil Tillage Res. 72, 125–137 (2003).

    Article 

    Google Scholar 

  • 19.

    Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA 115, E1157 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Zhang, Y. et al. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome 5, 97 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl Acad. Sci. USA 112, E911 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Hu, L. et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 23.

    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    McCormack, M. L. et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. N. Phytol. 207, 505–518 (2015).

    Article 

    Google Scholar 

  • 25.

    Pregitzer, K. S. et al. Fine root architecture of nine North American trees. Ecol. Monogr. 72, 293–309 (2002).

    Article 

    Google Scholar 

  • 26.

    Holdaway, R. J., Richardson, S. J., Dickie, I. A., Peltzer, D. A. & Coomes, D. A. Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. J. Ecol. 99, 954–963 (2011).

    Article 

    Google Scholar 

  • 27.

    Fitter, A. H. Morphometric analysis of root systems: application of the technique and influence of soil fertility on root system development in two herbaceous species. Plant Cell Environ. 5, 313–322 (1982).

    Google Scholar 

  • 28.

    Valenzuela-Estrada, L. R., Vera-Caraballo, V., Ruth, L. E. & Eissenstat, D. M. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). Am. J. Bot. 95, 1506–1514 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 29.

    Hishi, T. Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions. J. For. Res. 12, 126–133 (2007).

    Article 

    Google Scholar 

  • 30.

    Guo, D. et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. N. Phytol. 180, 673–683 (2008).

    Article 

    Google Scholar 

  • 31.

    Makita, N. et al. Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiol. 29, 579–585 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Guo, D., Mitchell, R. J., Withington, J. M., Fan, P.-P. & Hendricks, J. J. Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. J. Ecol. 96, 737–745 (2008).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Gu, J., Yu, S., Sun, Y., Wang, Z. & Guo, D. Influence of root structure on root survivorship: an analysis of 18 tree species using a minirhizotron method. Ecol. Res. 26, 755–762 (2011).

    Article 

    Google Scholar 

  • 34.

    Wang, B. & Qiu, Y. L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16, 299–363 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Tibbett, M. & Sanders, F. E. Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient patches of high resource quality. Ann. Bot. 89, 783–789 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Sanders, F. E. & Tinker, P. B. Phosphate flow into mycorrhizal roots. Pestic. Sci. 4, 385–395 (1973).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Hodge, A. & Storer, K. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386, 1–19 (2015).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Bending, G. D. & Read, D. J. The structure and function of the vegetative mycelium of ectomycorrhizal plants. N. Phytol. 130, 401–409 (1995).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl Acad. Sci. USA 113, 8741 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Gui, H., Hyde, K., Xu, J. & Mortimer, P. Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development. Sci. Rep. 7, 42184–42184 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Svenningsen, N. B. et al. Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J. 12, 1296–1307 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Olsson, P. A. & Wallander, H. Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiol. Ecol. 27, 195–205 (1998).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Hestrin, R., Hammer, E. C., Mueller, C. W. & Lehmann, J. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun. Biol. 2, 233 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Garbaye, J. Helper bacteria: a new dimension to the mycorrhizal symbiosis. N. Phytol. 128, 197–210 (1994).

    Article 

    Google Scholar 

  • 45.

    Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Cornelissen, J., Aerts, R., Cerabolini, B., Werger, M. & van der Heijden, M. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129, 611–619 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Reich, P. B. et al. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol. Lett. 8, 811–818 (2005).

    Article 

    Google Scholar 

  • 48.

    Minerovic, A. J., Valverde-Barrantes, O. J. & Blackwood, C. B. Physical and microbial mechanisms of decomposition vary in importance among root orders and tree species with differing chemical and morphological traits. Soil Biol. Biochem. 124, 142–149 (2018).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Fan, P. & Guo, D. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil. Oecologia 163, 509–515 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 50.

    Segal, E., Kushnir, T., Mualem, Y. & Shani, U. Water uptake and hydraulics of the root hair rhizosphere. Vadose Zone J. 7, 1027–1034 (2008).

    Article 

    Google Scholar 

  • 51.

    Gordon, W. S. & Jackson, R. B. Nutrient concentrations in fine roots. Ecology 81, 275–280 (2000).

    Article 

    Google Scholar 

  • 52.

    Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Yates, C. F. et al. Tree‐induced alterations to soil properties and rhizoplane‐associated bacteria following 23 years in a common garden. Plant Soil, https://doi.org/10.1007/s11104-021-04846-8 (2021).

  • 54.

    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 55.

    Wang, N., Wang, C. & Quan, X. Variations in fine root dynamics and turnover rates in five forest types in northeastern China. J. Forestry Res. 31, 871–884 (2020).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Kong, D. et al. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 10, 2203 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 57.

    Jia, S., Wang, Z., Li, X., Zhang, X. & McLaughlin, N. B. Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica. Tree Physiol. 31, 718–726 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 58.

    Lavely, E. K. et al. On characterizing root function in perennial horticultural crops. Am. J. Botany, https://doi.org/10.1002/ajb2.1530 (2020).

  • 59.

    Iffis, B., St-Arnaud, M. & Hijri, M. Bacteria associated with arbuscular mycorrhizal fungi within roots of plants growing in a soil highly contaminated with aliphatic and aromatic petroleum hydrocarbons. FEMS Microbiol. Lett. 358, 44–54 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Toljander, J. F., Lindahl, B. D., Paul, L. R., Elfstrand, M. & Finlay, R. D. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol. Ecol. 61, 295–304 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    McCormack, M., Adams, T. S., Smithwick, E. A. H. & Eissenstat, D. M. Predicting fine root lifespan from plant functional traits in temperate trees. N. Phytol. 195, 823–831 (2012).

    Article 

    Google Scholar 

  • 62.

    Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. 105, 1182–1196 (2017).

    Article 

    Google Scholar 

  • 63.

    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Apprill, A., McNally, S., Parsons, R. J. & Weber, L. K. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).

    Article 

    Google Scholar 

  • 65.

    Trexler, R. V. & Bell, T. H. Testing sustained soil-to-soil contact as an approach for limiting the abiotic influence of source soils during experimental microbiome transfer. FEMS Microbiol. Lett. 366, https://doi.org/10.1093/femsle/fnz228 (2019).

  • 66.

    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 
    Article 

    Google Scholar 

  • 69.

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE 8, e61217 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Bressan, M. et al. A rapid flow cytometry method to assess bacterial abundance in agricultural soil. Appl. Soil Ecol. 88, 60–68 (2015).

    Article 

    Google Scholar 

  • 72.

    Oksanen, J. et al. Vegan: community ecology package. R. Package Version 2. 2-1 2, 1–2 (2015).

    Google Scholar 

  • 73.

    Bisanz, J. E. MicrobeR: Handy functions for microbiome analysis in R. (2019).

  • 74.

    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012).


  • Source: Ecology - nature.com

    Publisher Correction: Evolutionary assembly of flowering plants into sky islands

    President Reif urges two-track strategy to achieve global climate goals in 30 years