in

The sublethal effects of neonicotinoids on spiders are independent of their nutritional status

  • 1.

    Holmstrum, P. et al. Interactions between effects of environmental chemicals and natural stressors: A review. Sci. Total Environ. 408, 3746–3762 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 2.

    Wahl, O. & Ulm, K. Influence of pollen feeding and physiological condition on pesticide sensitivity of the honey bee Apis mellifera carnica. Oecologia 59, 106–128 (1983).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Schmehl, D. R., Teal, P. E. A., Frazier, J. L. & Grozinger, C. M. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J. Insect Physiol. 71, 177–190 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Tosi, S., Nieh, J. C., Sgolastra, F., Cabbri, R. & Medrzycki, P. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proc. Biol. Sci. 284, 20171711 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Stuligross, C. & Williams, N. M. Pesticide and resource stressors additively impair wild bee reproduction. Proc. Biol. Sci. 287, 20201390 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Liess, M., Foit, K., Knillmann, S., Schäfer, R. B. & Liess, H.-D. Predicting the synergy of multiple stress effects. Sci. Rep. 6, 32965 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, 2012).

    Google Scholar 

  • 9.

    Simpson, S. J., Le Couteur, D. G. & Raubenheimer, D. Putting the balance back in diet. Cell 161, 18–23 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Wise, D. Food limitation of the spider Linyphia marginata: Experimental field studies. Ecology 56, 637–646 (1975).

    Article 

    Google Scholar 

  • 11.

    Bilde, T. & Toft, S. Quantifying food limitation of arthropod predators in the field. Oecologia 115, 54–58 (1998).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Wilder, S. M. & Rypstra, A. Diet quality affects mating behaviour and egg production in a wolf spider. Anim. Behav. 76, 439–445 (2008).

    Article 

    Google Scholar 

  • 13.

    Tanaka, K. & Itô, Y. Decrease in respiratory rate in a wolf spider, Pardosa astrigera (L. Koch), under starvation. Res. Popul. Ecol. 24, 360–374 (1982).

    Article 

    Google Scholar 

  • 14.

    O’Connor, K. I., Taylor, A. C. & Metcalfe, N. B. The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon. J. Fish Biol. 57, 41–51 (2000).

    Article 

    Google Scholar 

  • 15.

    McCue, M. D. Specific dynamic action: A century of investigation. Comp. Biochem. Physiol. A. 144, 381394 (2006).

    Article 
    CAS 

    Google Scholar 

  • 16.

    Secor, S. M. Specific dynamic action: A review of the postprandial metabolic response. J. Comp. Physiol. B 179, 1–56 (2009).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Van Leeuwen, T. E., Rosenfeld, J. S. & Richards, J. G. Effects of food ration on SMR: Influence of food consumption on individual variation in metabolic rate in juvenile coho salmon (Onchorhynchus kisutch). J. Anim. Ecol. 81, 395–402 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Parthasarathy, B. & Somanathan, H. Body condition and food shapes group dispersal but not solitary dispersal in a social spider. Behav. Ecol. 29, 619–627 (2018).

    Article 

    Google Scholar 

  • 19.

    Koemel, N. A., Barnes, C. L. & Wilder, S. M. Metabolic and behavioral responses of predators to prey nutrient content. J. Insect Physiol. 116, 25–31 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Řezáč, M., Řezáčová, V. & Heneberg, P. Neonicotinoid insecticides limit the potential of spiders to re-colonize disturbed agroecosystems when using silk-mediated dispersal. Sci. Rep. 9, 12272 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Řezáč, M., Řezáčová, V. & Heneberg, P. Contact application of neonicotinoids suppresses the predation rate in different densities of prey and induces paralysis of common farmland spiders. Sci. Rep. 9, 5724 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 22.

    Fagan, W. F. et al. Nitrogen in insects: implications for trophic complexity and species diversification. Am. Nat. 160, 784–802 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Raubenheimer, D., Mayntz, D., Simpson, S. J. & Tøft, S. Nutrient-specific compensation following diapause in a predator: Implications for intraguild predation. Ecology 88, 2598–2608 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Lease, H. M. & Wolf, B. O. Exoskeletal chitin scales iso¬metrically with body size in terrestrial insects. J. Morphol. 271, 759–768 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Wilder, S. M., Norris, M., Lee, R. W., Raubenheimer, D. & Simpson, S. J. Arthropod food webs become increasingly lipid-limited at higher trophic levels. Ecol. Lett. 16, 895–902 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Salomon, M., Mayntz, D. & Lubin, Y. Colony nutrition skews reproduction in a social spider. Behav. Ecol. 19, 605–611 (2008).

    Article 

    Google Scholar 

  • 27.

    Jensen, K., Mayntz, D., Wang, T., Simpson, S. J. & Overgaard, J. Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga. J. Insect Physiol. 56, 1095–1100 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Jensen, K., Mayntz, D., Toft, S., Raubenheimer, D. & Simpson, S. J. Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Anim. Behav. 81, 993–999 (2011).

    Article 

    Google Scholar 

  • 29.

    Wiggins, W. D. & Wilder, S. M. Mismatch between dietary requirements for lipid by a predator and availability of lipid in prey. Oikos 127, 1024–1032 (2018).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Uetz, G. W., Bischoff, J. & Raver, J. Survivorship of wolf spiders (Lycosidae) reared on different diets. J. Arachnol. 20, 207–211 (1992).

    Google Scholar 

  • 31.

    Sigsgaard, L., Toft, S. & Villareal, S. Diet-dependent survival, development and fecundity of the spider Atypena formosana (Oi) (Araneae: Linyphiidae) implications for biological control in rice. Biocontrol Sci. Technol. 11, 233–244 (2001).

    Article 

    Google Scholar 

  • 32.

    Fisker, E. N. & Toft, S. Effects of chronic exposure to a toxic prey in a generalist predator. Physiol. Entomol. 29, 129–138 (2004).

    Article 

    Google Scholar 

  • 33.

    Jensen, K., Mayntz, D., Toft, S., Raubenheimer, D. & Simpson, S. J. Prey nutrient composition has different effects on Pardosa wolf spiders with dissimilar life histories. Oecologia 165, 577–583 (2011).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Wilder, S. M. Spider nutrition: An integrative perspective. Adv. Insect Physiol. 40, 87–136 (2011).

    Article 

    Google Scholar 

  • 35.

    Barnes, C. L., Hawlena, D. & Wilder, S. M. Predators buffer the effects of variation in prey nutrient content for nutrient deposition. Oikos 128, 360–367 (2019).

    Article 

    Google Scholar 

  • 36.

    Jensen, K. et al. Optimal foraging for specific nutrients in predatory beetles. Proc. R. Soc. B 279, 2212–2218 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Toft, S. & Macías-Hernández, N. Metabolic adaptations for isopod specialization in three species of Dysdera spiders from the Canary Islands. Physiol. Entomol. 42, 191–198 (2017).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Barry, K. L. & Wilder, S. M. Macronutrient intake affects reproduction of a predatory insect. Oikos 122, 1058–1064 (2013).

    Article 

    Google Scholar 

  • 39.

    Wilder, S. M. & Schneider, J. M. Micronutrient consumption by female Argiope bruennichi affects offspring survival. J. Insect Physiol. 100, 128–132 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Demaree, S. R., Gilbert, C. D., Mersmann, H. J. & Smith, S. B. Conjugated linoleic acid differentially modifies fatty acid composition in subcellular fractions of muscle and adipose tissue but not adiposity of postweaning pigs. J. Nutr. 132, 3272–3279 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Nagao, K. & Yanagita, T. Conjugated fatty acids in food and their health benefits. J. Biosci. Bioeng. 100, 152–157 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Hennessy, A. A., Ross, P. R., Fitzgerald, G. F. & Stanton, C. Sources and bioactive properties of conjugated dietary fatty acids. Lipids 51, 377–397 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Hawley, J., Simpson, S. J. & Wilder, S. M. Effects of prey macronutrient content on body composition and nutrient intake in a web-building spider. PLoS ONE 9, e99165 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Dicks, L. Bees, lies and evidence-based policy. Nature 494, 283 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 47.

    Tsvetkov, N. et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356, 1395–1397 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Song, F. et al. Specific loops D, E and F of nicotinic acetylcholine receptor β1 subunit may confer imidacloprid selectivity between Myzus persicae and its predatory enemy Pardosa pseudoannulata. Insect Biochem. Mol. Biol. 39, 833–841 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Korenko, S., Sýkora, J., Řezáč, M. & Heneberg, P. Neonicotinoids suppress contact chemoreception in a common farmland spider. Sci. Rep. 10, 7019 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Benamú, M. et al. Nanostructural and mechanical property changes to spider silk as a consequence of insecticide exposure. Chemosphere 181, 241–249 (2017).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 52.

    Korenko, S., Saska, P., Kysilková, K., Řezáč, M. & Heneberg, P. Prey contaminated with neonicotinoids induces feeding deterrent behavior of a common farmland spider. Sci. Rep. 9, 15895 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Park, Y. et al. Imidacloprid, a neonicotinoid insecticide, potentiates adipogenesis in 3T3-L1 adipocytes. J. Agric. Food Chem. 61, 255–259 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Sun, Q. et al. Imidacloprid promotes high fat diet-induced adiposity in female C57BL/6J mice and enhances adipogenesis in 3T3-L1 adipocytes via the AMPKα-mediated pathway. J. Agric. Food Chem. 65, 6572–6581 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Sun, Q. et al. Imidacloprid promotes high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice. J. Agric. Food Chem. 64, 9293–9306 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    McCluney, K. E. & Sabo, J. L. Water availability directly determines per capita consumption at two trophic levels. Ecology 90, 1463–1469 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    McCluney, K. E. & Sabo, J. L. Tracing water sources of terrestrial animal populations with stable isotopes: Laboratory tests with crickets and spiders. PLoS ONE 5, e15696 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Leinbach, I. L., McCluney, K. E. & Sabo, J. L. Predator water balance alters intraguild predation in a streamside food web. Ecology 100, e02635 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Noldus, L. P., Spink, A. J. & Tegelenbosch, R. A. EthoVision: A versatile video tracking system for automation of behavioral experiments. Behav. Res. Methods Instrum. Comput. 33, 398–414 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Pétillon, J. J., Deruytter, D., Decae, A., Renault, D. & Bonte, D. Habitat use, but not dispersal limitations, as the mechanism behind the aggregated population structure of the mygalomorph species Atypus affinis. Anim. Biol. 62, 181–192 (2012).

    Article 

    Google Scholar 

  • 61.

    Radwan, M. A. & Mohamed, M. S. Imidacloprid induced alterations in enzyme activities and energy reserves of the land snail, Helix aspersa. Ecotoxicol. Environ. Saf. 95, 91–97 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Ribeiro, S., Sousa, J. P., Nogueira, A. J. A. & Soares, A. M. V. M. Effect of endosulfan and parathion on energy reserves and physiological parameters of the terrestrial isopod Porcellio dilatatus. Ecotoxicol. Environ. Saf. 49, 131–138 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Rambabu, P. J. & Rao, M. B. Effect of an organochlorine and three organophosphate pesticides on glucose, glycogen, lipid and protein contents in tissues of the freshwater snail, Bellamya dissimilis (Müller). Bull. Environ. Contam. Toxicol. 53, 142–148 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Dutra, B. K., Fernandes, F. A., Lauffer, A. L. & Oliveira, G. T. Carbofuran-induced alterations in the energy metabolism and reproductive behaviors of Hyalella castroi (Crustacea, Amphipoda). Comp. Biochem. Physiol. Part C 149, 640–646 (2009).

    CAS 

    Google Scholar 

  • 65.

    Messiad, R., Habes, D. & Soltani, N. Reproductive effects of a neonicotinoid insecticide (Imidacloprid) in the German Cockroaches Blattella germanica L. (Dictyoptera, Blattellidae). J. Entomol. Zool. Stud. 3, 1–6 (2015).

    Google Scholar 

  • 66.

    Abdelsalam, S. A., Alzahrani, A. M., Elmenshawy, O. M., Sedky, A. & Abdel-Moneim, A. M. Biochemical and ultrastructural changes in the ovaries of red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) following acute imidacloprid poisoning. J. Asia Pac. Entomol. 23, 709–714 (2020).

    Article 

    Google Scholar 

  • 67.

    Tufi, S., Stel, J. M., De Boer, J., Lamoree, M. H. & Leonards, P. E. G. Metabolomics to explore imidacloprid-induced toxicity in the central nervous system of the freshwater snail Lymnaea stagnalis. Environ. Sci. Technol. 49, 14529–14536 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Ewere, E. E., Reichelt-Brushett, A. & Benkerndorff, K. Imidacloprid and formulated product impacts the fatty acids and enzymatic activities in tissues of Sydney rock oysters, Saccostrea glomerata. Mar. Environ. Res. 151, 104765 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Capowiez, Y., Rault, M., Mazzia, C. & Belzunces, L. Earthworm behavior as a biomarker: A case study using imidacloprid. Pedobiologia 47, 542–547 (2003).

    Google Scholar 

  • 70.

    Drobne, D. et al. Toxicity of imidacloprid to the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). Chemosphere 71, 1326–1334 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Publisher Correction: Evolutionary assembly of flowering plants into sky islands

    President Reif urges two-track strategy to achieve global climate goals in 30 years