in

Distance to native climatic niche margins explains establishment success of alien mammals

  • 1.

    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Richardson, D. M. Fifty Years of Invasion Ecology: The Legacy of Charles Elton. (John Wiley & Sons, 2011).

  • 4.

    Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Brown, J. H. Patterns, modes and extents of invasions by vertebrates. Biological Invasions: A Global Perspective. 85–110 (John Wiley & Sons, 1989).

  • 6.

    Holt, R. D., Barfield, M. & Gomulkiewicz, R. Theories of niche conservatism and evolution: could exotic species be potential tests. in: Species Invasions: Insights into Ecology, Evolution and Biogeography (eds. Sax, Stachowicz & Gaines) 259–290 (Sinauer Associates, Mass, 2005).

  • 7.

    Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27, 597–623 (1996).

    Article 

    Google Scholar 

  • 8.

    Sagarin, R. D., Gaines, S. D. & Gaylord, B. Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends Ecol. Evol. 21, 524–530 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Forsyth, D. M., Duncan, R. P., Bomford, M. & Moore, G. Climatic suitability, life-history traits, introduction effort, and the establishment and spread of introduced mammals in Australia. Conserv. Biol. 18, 557–569 (2004).

    Article 

    Google Scholar 

  • 11.

    Bomford, M., Kraus, F., Barry, S. C. & Lawrence, E. Predicting establishment success for alien reptiles and amphibians: a role for climate matching. Biol. Invasions 11, 713–724 (2009).

    Article 

    Google Scholar 

  • 12.

    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl Acad. Sci. U.S.A. 117, 23643–23651 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    González-Suárez, M., Bacher, S. & Jeschke, J. M. Intraspecific trait variation is correlated with establishment success of alien mammals. Am. Nat. 185, 737–746 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Redding, D. W. et al. Location-level processes drive the establishment of alien bird populations worldwide. Nature https://doi.org/10.1038/s41586-019-1292-2 (2019).

  • 17.

    Titeux, N. et al. The need for large-scale distribution data to estimate regional changes in species richness under future climate change. Divers. Distrib. 23, 1393–1407 (2017).

    Article 

    Google Scholar 

  • 18.

    Chevalier, M., Broennimann, O., Cornuault, J., & Guisan, A. Data integration methods to account for spatial niche truncation effects in regional projections of species distribution. Ecol. Appl. (in press).

  • 19.

    Blackburn, T. M. & Duncan, R. P. Determinants of establishment success in introduced birds. Nature 414, 195–197 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Bacon, S. J., Aebi, A., Calanca, P. & Bacher, S. Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Divers. Distrib. 20, 84–94 (2014).

    Article 

    Google Scholar 

  • 21.

    Abellán, P., Tella, J. L., Carrete, M., Cardador, L. & Anadón, J. D. Climate matching drives spread rate but not establishment success in recent unintentional bird introductions. Proc. Natl Acad. Sci. 114, 9385–9390 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 22.

    Long, J. L. Introduced Mammals of the World: Their History, Distribution and Influence. (CSIRO PUBLISHING, 2003).

  • 23.

    Pulliam, H. R. On the relationship between niche and distribution. Ecol. Lett. 3, 349–361 (2000).

    Article 

    Google Scholar 

  • 24.

    Godsoe, W., Jankowski, J., Holt, R. D. & Gravel, D. Integrating biogeography with contemporary niche theory. Trends Ecol. Evol. 32, 488–499 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Sax, D. F., Early, R. & Bellemare, J. Niche syndromes, species extinction risks, and management under climate change. Trends Ecol. Evol. 28, 517–523 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Csergő, A. M. et al. Less favourable climates constrain demographic strategies in plants. Ecol. Lett. 20, 969–980 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Capellini, I., Baker, J., Allen, W. L., Street, S. E. & Venditti, C. The role of life history traits in mammalian invasion success. Ecol. Lett. 18, 1099–1107 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Sol, D., Bacher, S., Reader, S. M., & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. American Naturalist 172(S1), S63–S71 (2008).

    Article 

    Google Scholar 

  • 29.

    Duncan, R. P., Blackburn, T. M., Rossinelli, S. & Bacher, S. Quantifying invasion risk: the relationship between establishment probability and founding population size. Methods Ecol. Evol. 5, 1255–1263 (2014).

    Article 

    Google Scholar 

  • 30.

    Allen, C. R. et al. Predictors of regional establishment success and spread of introduced non-indigenous vertebrates. Glob. Ecol. Biogeogr. 22, 889–899 (2013).

    Article 

    Google Scholar 

  • 31.

    Cassey, P., Delean, S., Lockwood, J. L., Sadowski, J. S. & Blackburn, T. M. Dissecting the null model for biological invasions: A meta-analysis of the propagule pressure effect. PLoS Biol. 16, e2005987 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Buswell, J. M., Moles, A. T. & Hartley, S. Is rapid evolution common in introduced plant species? J. Ecol. 99, 214–224 (2011).

    Article 

    Google Scholar 

  • 33.

    Broennimann, O., Mráz, P., Petitpierre, B., Guisan, A. & Müller-Schärer, H. Contrasting spatio-temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America. J. Biogeogr. 41, 1126–1136 (2014).

    Article 

    Google Scholar 

  • 34.

    Shea, K. & Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 17, 170–176 (2002).

    Article 

    Google Scholar 

  • 35.

    Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Escobar, L. E., Qiao, H., Cabello, J. & Townsend Peterson, A. Ecological niche modeling re-examined: a case study with the Darwin’s fox. Ecol. Evolut. 8, 4757–4770 (2018).

    Article 

    Google Scholar 

  • 37.

    Petitpierre, B. et al. Will climate change increase the risk of plant invasions into mountains? Ecol. Appl. 26, 530–544 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Pheloung, P. C., Williams, P. A. & Halloy, S. R. A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J. Environ. Manag. 57, 239–251 (1999).

    Article 

    Google Scholar 

  • 39.

    Pluess, T. et al. Which factors affect the success or failure of eradication campaigns against alien species? PLoS One 7, e48157 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Pyšek, P. et al. MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota 62, 407–461 (2020).

    Article 

    Google Scholar 

  • 41.

    Lonsdale, W. M. Global patterns of plant invasions and the concept of invasibility. Ecology 80, 1522 (1999).

    Article 

    Google Scholar 

  • 42.

    Leung, B. et al. TEASIng apart alien species risk assessments: a framework for best practices. Ecol. Lett. 15, 1475–1493 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Fourcade, Y. Comparing species distributions modelled from occurrence data and from expert-based range maps. Implication for predicting range shifts with climate change. Ecol. Inform. 36, 8–14 (2016).

    Article 

    Google Scholar 

  • 44.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • 45.

    Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture. Ecosyst. Environ. 126, 67–80 (2008).

    Article 

    Google Scholar 

  • 46.

    Bellard, C. et al. Will climate change promote future invasions? Glob. Chang. Biol. 19, 3740–3748 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).

    Article 

    Google Scholar 

  • 48.

    Cola, V. D. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).

    Article 

    Google Scholar 

  • 49.

    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. U.S.A. 104, 13384–13389 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Plummer, M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. in Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), March 20–22, Vienna, Austria. (2003).

  • 51.

    R Core Team. R: a language and environment for statistical computing. (2014).

  • 52.

    Su, Y.-S. & Yajima, M. R2jags: a package for running jags from R. (2013).

  • 53.

    Gelman, A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1, 515–534 (2006).

    MathSciNet 
    MATH 

    Google Scholar 

  • 54.

    Little, R. & Rubin, D. Statistical Analysis with Missing Data, Second Edition. (Wiley Series in Probability and Statistics, 2002).

  • 55.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    MATH 

    Google Scholar 

  • 56.

    Gelman, A., Meng, X.-L. & Stern, H. Posterior predictive assessment of model fitness via realized discrepancies. Stat. Sin. 6, 733–760 (1996).

    MathSciNet 
    MATH 

    Google Scholar 

  • 57.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article 

    Google Scholar 

  • 58.

    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).

  • 59.

    Broennimann, O., et al. Distance to native climatic niche margins explains establishment success of alien mammals. ecospat/NMI: NMI v1.0. Zenodo. https://doi.org/10.5281/zenodo.4588999. (2021).


  • Source: Ecology - nature.com

    Electrifying cement with nanocarbon black

    In-stream turbines for rethinking hydropower development in the Amazon basin