Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).
Google Scholar
Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
Google Scholar
Richardson, D. M. Fifty Years of Invasion Ecology: The Legacy of Charles Elton. (John Wiley & Sons, 2011).
Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).
Google Scholar
Brown, J. H. Patterns, modes and extents of invasions by vertebrates. Biological Invasions: A Global Perspective. 85–110 (John Wiley & Sons, 1989).
Holt, R. D., Barfield, M. & Gomulkiewicz, R. Theories of niche conservatism and evolution: could exotic species be potential tests. in: Species Invasions: Insights into Ecology, Evolution and Biogeography (eds. Sax, Stachowicz & Gaines) 259–290 (Sinauer Associates, Mass, 2005).
Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27, 597–623 (1996).
Google Scholar
Sagarin, R. D., Gaines, S. D. & Gaylord, B. Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends Ecol. Evol. 21, 524–530 (2006).
Google Scholar
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).
Google Scholar
Forsyth, D. M., Duncan, R. P., Bomford, M. & Moore, G. Climatic suitability, life-history traits, introduction effort, and the establishment and spread of introduced mammals in Australia. Conserv. Biol. 18, 557–569 (2004).
Google Scholar
Bomford, M., Kraus, F., Barry, S. C. & Lawrence, E. Predicting establishment success for alien reptiles and amphibians: a role for climate matching. Biol. Invasions 11, 713–724 (2009).
Google Scholar
Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).
Google Scholar
Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl Acad. Sci. U.S.A. 117, 23643–23651 (2020).
Google Scholar
Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).
Google Scholar
González-Suárez, M., Bacher, S. & Jeschke, J. M. Intraspecific trait variation is correlated with establishment success of alien mammals. Am. Nat. 185, 737–746 (2015).
Google Scholar
Redding, D. W. et al. Location-level processes drive the establishment of alien bird populations worldwide. Nature https://doi.org/10.1038/s41586-019-1292-2 (2019).
Titeux, N. et al. The need for large-scale distribution data to estimate regional changes in species richness under future climate change. Divers. Distrib. 23, 1393–1407 (2017).
Google Scholar
Chevalier, M., Broennimann, O., Cornuault, J., & Guisan, A. Data integration methods to account for spatial niche truncation effects in regional projections of species distribution. Ecol. Appl. (in press).
Blackburn, T. M. & Duncan, R. P. Determinants of establishment success in introduced birds. Nature 414, 195–197 (2001).
Google Scholar
Bacon, S. J., Aebi, A., Calanca, P. & Bacher, S. Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Divers. Distrib. 20, 84–94 (2014).
Google Scholar
Abellán, P., Tella, J. L., Carrete, M., Cardador, L. & Anadón, J. D. Climate matching drives spread rate but not establishment success in recent unintentional bird introductions. Proc. Natl Acad. Sci. 114, 9385–9390 (2017).
Google Scholar
Long, J. L. Introduced Mammals of the World: Their History, Distribution and Influence. (CSIRO PUBLISHING, 2003).
Pulliam, H. R. On the relationship between niche and distribution. Ecol. Lett. 3, 349–361 (2000).
Google Scholar
Godsoe, W., Jankowski, J., Holt, R. D. & Gravel, D. Integrating biogeography with contemporary niche theory. Trends Ecol. Evol. 32, 488–499 (2017).
Google Scholar
Sax, D. F., Early, R. & Bellemare, J. Niche syndromes, species extinction risks, and management under climate change. Trends Ecol. Evol. 28, 517–523 (2013).
Google Scholar
Csergő, A. M. et al. Less favourable climates constrain demographic strategies in plants. Ecol. Lett. 20, 969–980 (2017).
Google Scholar
Capellini, I., Baker, J., Allen, W. L., Street, S. E. & Venditti, C. The role of life history traits in mammalian invasion success. Ecol. Lett. 18, 1099–1107 (2015).
Google Scholar
Sol, D., Bacher, S., Reader, S. M., & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. American Naturalist 172(S1), S63–S71 (2008).
Google Scholar
Duncan, R. P., Blackburn, T. M., Rossinelli, S. & Bacher, S. Quantifying invasion risk: the relationship between establishment probability and founding population size. Methods Ecol. Evol. 5, 1255–1263 (2014).
Google Scholar
Allen, C. R. et al. Predictors of regional establishment success and spread of introduced non-indigenous vertebrates. Glob. Ecol. Biogeogr. 22, 889–899 (2013).
Google Scholar
Cassey, P., Delean, S., Lockwood, J. L., Sadowski, J. S. & Blackburn, T. M. Dissecting the null model for biological invasions: A meta-analysis of the propagule pressure effect. PLoS Biol. 16, e2005987 (2018).
Google Scholar
Buswell, J. M., Moles, A. T. & Hartley, S. Is rapid evolution common in introduced plant species? J. Ecol. 99, 214–224 (2011).
Google Scholar
Broennimann, O., Mráz, P., Petitpierre, B., Guisan, A. & Müller-Schärer, H. Contrasting spatio-temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America. J. Biogeogr. 41, 1126–1136 (2014).
Google Scholar
Shea, K. & Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 17, 170–176 (2002).
Google Scholar
Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135 (2006).
Google Scholar
Escobar, L. E., Qiao, H., Cabello, J. & Townsend Peterson, A. Ecological niche modeling re-examined: a case study with the Darwin’s fox. Ecol. Evolut. 8, 4757–4770 (2018).
Google Scholar
Petitpierre, B. et al. Will climate change increase the risk of plant invasions into mountains? Ecol. Appl. 26, 530–544 (2016).
Google Scholar
Pheloung, P. C., Williams, P. A. & Halloy, S. R. A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J. Environ. Manag. 57, 239–251 (1999).
Google Scholar
Pluess, T. et al. Which factors affect the success or failure of eradication campaigns against alien species? PLoS One 7, e48157 (2012).
Google Scholar
Pyšek, P. et al. MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota 62, 407–461 (2020).
Google Scholar
Lonsdale, W. M. Global patterns of plant invasions and the concept of invasibility. Ecology 80, 1522 (1999).
Google Scholar
Leung, B. et al. TEASIng apart alien species risk assessments: a framework for best practices. Ecol. Lett. 15, 1475–1493 (2012).
Google Scholar
Fourcade, Y. Comparing species distributions modelled from occurrence data and from expert-based range maps. Implication for predicting range shifts with climate change. Ecol. Inform. 36, 8–14 (2016).
Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Google Scholar
Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture. Ecosyst. Environ. 126, 67–80 (2008).
Google Scholar
Bellard, C. et al. Will climate change promote future invasions? Glob. Chang. Biol. 19, 3740–3748 (2013).
Google Scholar
Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
Google Scholar
Cola, V. D. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).
Google Scholar
Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. U.S.A. 104, 13384–13389 (2007).
Google Scholar
Plummer, M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. in Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), March 20–22, Vienna, Austria. (2003).
R Core Team. R: a language and environment for statistical computing. (2014).
Su, Y.-S. & Yajima, M. R2jags: a package for running jags from R. (2013).
Gelman, A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1, 515–534 (2006).
Google Scholar
Little, R. & Rubin, D. Statistical Analysis with Missing Data, Second Edition. (Wiley Series in Probability and Statistics, 2002).
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
Google Scholar
Gelman, A., Meng, X.-L. & Stern, H. Posterior predictive assessment of model fitness via realized discrepancies. Stat. Sin. 6, 733–760 (1996).
Google Scholar
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
Google Scholar
Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).
Broennimann, O., et al. Distance to native climatic niche margins explains establishment success of alien mammals. ecospat/NMI: NMI v1.0. Zenodo. https://doi.org/10.5281/zenodo.4588999. (2021).
Source: Ecology - nature.com