in

An integrative approach reveals a new species of flightless leaf beetle (Chrysomelidae: Suinzona) from South Korea

Description of Suinzona borowieci sp. nov. (Figs. 1, 2 and 3)

Figure 1

Morphology of Suinzona borowieci sp. nov. and related species: (a,b) Holotype of S. borowieci sp. nov. (a) Dorsal habitus, (b) lateral habitus; (c–e) exposed hind wing, (c) S. borowieci sp. nov., (d) S. cyrtonoides, (e) Potaninia assamensis; (f–g) aedeagus with everted internal sac (left) and flagellum (right); (f) S. borowieci sp. nov., (g) S. cyrtonoides.

Full size image
Figure 2

Genitalia of Suinzona borowieci sp. nov. and related species: (a–d) S. borowieci sp. nov. (a) Aedeagus, dorsal view; (b) aedeagus, lateral view; (c) aedeagus, apical view; (d) spermatheca. (e) Aedeagus of Suinzona cyrtonoides, apical view.

Full size image
Figure 3

Distribution map of Suinzona and sampling sites: (a) Distribution of Suinzona species in China, South Korea and Japan, (b) type locality and collection sites of Suinzona borowieci sp. nov. in South Korea. Records of distribution are taken from Ge et al.3, Suzuki et al.21 and the results of this work. The map is redrawn and modified from National Geographic Information Institute of Korea (https://www.ngii.go.kr).

Full size image

Family Chrysomelidae Latreille, 1802

Subfamily Chrysomelinae Latreille, 1802

Genus Suinzona Chen, 1931

Type locality

South Korea: Gyeongbuk Province, Yeongyang County, Irwolsan Mountain, 36° 48′ 30.42″ N, 129° 5′ 23.56″ E, ca. 1135 m.

Type material

Holotype: male (NMPC), South Korea: Gyeongbuk Prov., Yeongyang, Mt. Irwolsan, 36° 48′ 30.42″ N, 129° 5′ 23.56″ E, ca. 1135 m, 12.VI.2011, H.W. Cho // HOLOTYPUS Suinzona borowieci sp. n. Cho & Kim 2020. Paratype: SOUTH KOREA – Gyeongbuk Prov.: 1 female (NMPC), same data as holotype plus PARATYPUS Suinzona borowieci sp. n. Cho & Kim 2020; 1 female (HCC), same data as holotype except 31.VII.2004; 1 female (HCC), same data as holotype except 31.VII.2004; 4 males 2 females (HCC), same data as holotype except 22.V.2009; 8 males 2 females (HCC), same data as holotype except 25.VI.2010; 4 males 2 females (HCC), same data as holotype except 10.VI.2017; 1 male 1 female (HCC), same data as holotype except 17.VI.2017; 1 male (HCC), same data as holotype except 36° 48′ 11.74″ N, 129° 6′ 10.01″ E, ca. 1190 m, 17.V.2020; 3 males 1 female (HCC), same data as holotype except 7.VI.2020; 2 males (KNAE), Yeongyang, Irwol-myeon, Mt. Irwolsan, 7.VI.2014, J.K. Park // I14_KNAE483613 // I14_KNAE483649; 1 male 1 female (HCC), Bongwha, Myeongho-myeon, Bukgok-ri, Mt. Cheongnyangsan, 36° 47′ 47″ N, 128° 54′ 30″ E, 21–22.V.2015, J.S. Lee; 1 female (HCC), Daegu, Dong-gu, Mt. Palgongsan, 21.V.1998; 2 males 1 female (HCC), Gunwi, Bugye-myeon, Dongsan-ri, Mt. Palgongsan, 9.V.2009, S.S. Jung; 1 male 1 female (HCC), Yecheon, Bomun-myeon, Urae-ri, Mt. Hakgasan, 26.V.2010, Y.J. You; 1 male (HCC), Yecheon, Bomun-myeon, Mt. Hakgasan, 36° 40′ 32.16″ N, 128° 35′ 38.24″ E, ca. 330 m, 3.VI.2020, H.W. Cho; 1 female (HCC), Cheongsong, Hyeonseo-myeon, Galcheon-ri, 26.V.2004, H.W. Cho; Gangwon Prov.: 2 females (HCC), Taebaek, Hwangji-dong, Mt. Hambaeksan, 37° 9′ 53.22″ N, 128° 55′ 1.35″ E, ca. 1470 m, 6.VI.2005, H.W. Cho; 2 males 3 females (HCC), same data as preceding one except 6.VI.2006; 1 female (HCC), same data as preceding one except 29.V.2009; 1 female (HCC), same data as preceding one except 10.VI.2017; 1 female (HCC), same data as preceding one except 5.VI.2020; Chungnam Prov.: 1 male (HCC), Buyeo, Gyuam-myeon, Sumok-ri, 1–15.VI.2005, J.W. Lee.

Other material

Six mature larvae (HCC), same data as holotype except 29.VI.2017; 5 mature larvae (HCC), Gangwon Prov., Taebaek, Hwangji-dong, Mt. Hambaeksan, 19.VI.2006, H.W. Cho; 8 mature larvae (HCC), Gyeongbuk Prov., Yecheon, Bomun-myeon, Mt. Hakgasan, 31.V.2020, H.W. Cho; 7 mature larvae (HCC), same data as preceding one except 3.VI.2020.

Diagnosis

Suinzona borowieci sp. nov. is almost identical to S. cyrtonoides in the shape of the flagellum of the aedeagus. However, it can be distinguished by its larger body size (5.5–7.0 mm vs. 4.8–6.0 mm), denser punctures on elytra (less dense punctures in S. cyrtonoides), larger and broader aedeagus with the distal tips of the flagellum quadrifurcated and slightly curved, arising from two sclerotized tubes (with a smaller and narrower aedeagus with distal tips of the flagellum quadrifurcated and almost straight, arising from a sclerotized tube in S. cyrtonoides).

Description

Measurements in mm (n = 5): length of body: 5.50–7.00 (mean 6.18); width of body: 3.50–4.50 (mean 3.97); height of body: 2.60–3.40 (mean 2.94); width of head: 1.65–1.95 (mean 1.81); interocular distance: 1.15–1.50 (mean 1.33); width of apex of pronotum: 1.90–2.20 (mean 2.02); width of base of pronotum: 2.70–3.25 (mean 2.94); length of pronotum along midline: 1.75–2.05 (mean 1.90); length of elytra along suture: 3.75–5.20 (mean 4.41). Body: oval and strongly convex (Fig. 1a,b). Body dark bluish-black with weak metallic lustre, rarely with a dark brass dorsum. Antenna, mouthparts and tarsus partially dark reddish-brown. Head. Vertex weakly convex, covered with sparse punctures, becoming coarser and denser towards sides, with convex area above antennal insertion. Eyes strongly transverse-oblong and protuberant. Frontal suture V-shaped, forming obtuse angle, arms bent at middle, reaching anterior margin. Frons flat, strongly depressed at anterior margin, covered with dense punctures. Clypeus narrow and trapezoidal. Anterior margin of labrum weakly concave. Mandibles with 2 blunt apical teeth and dense punctures bearing setae on outer side. Maxillary palp 4-segmented with apical palpomere fusiform, truncate apically. Antennae in males much longer than half the length of the body; antennomere 1 robust; antennomere 2 shorter than 3; antennomere 3 longer than 4; antennomeres 7–10 each moderately widened, much longer than wide; antennomere 11 longest, approximately 2.4 times as long as wide. Antennae in females less than half the length of the body. Pronotum. 1.50–1.63 times as wide as long. Lateral sides widest at or near base, roundly narrowed anteriorly, anterior angles strongly produced. Anterior and lateral margins bordered, lateral margins barely visible in dorsal view. Trichobothria present on posterior angles. Disc glabrous, covered with moderately dense punctures, becoming coarser along basal margin; interspaces covered with fine and moderately dense punctures. Scutellum much wider than long, widely rounded apically, with a few fine punctures. Elytra. 1.07–1.16 times as long as wide. Lateral sides widest near middle, roundly narrowed posteriorly. Humeral calli not developed. Disc glabrous and finely rugose, covered with rather irregular punctures arranged in longitudinal rows near suture and lateral margin, more irregular in median region; interspaces covered with fine and sparse punctures. Epipleura wholly visible in lateral view. Hind wings steno- and brachypterous (Fig. 1c). Venter. Hypomera weakly rugose, with a few punctures near anterolateral corners of prosternum. Prosternum covered with coarse and dense punctures bearing long setae; prosternal process broad and strongly expanded apicolaterally, closing procoxal cavities posteriorly. Metasternum covered with punctures bearing long setae, dense medially, sparse laterally. Abdominal ventrites covered with moderately dense punctures bearing long or short setae; apex of last visible abdominal ventrite deeply emarginate in males while rounded in females. Legs. Moderately robust. Tibiae simple without preapical tooth. Tarsomere 1 subequal in width to tarsomere 3 in males but distinctly narrower than tarsomere 3 in females. Tarsal claws simple. Genitalia. Aedeagus broad, lateral margins shallowly concave, with apex moderately produced and truncate in dorsal view (Fig. 2a,c); regularly curved, tapering from middle to apex, with apex pointed and slightly bent upward in lateral view (Fig. 2b); flagellum club-shaped with sharp, sclerotized and quadrifid tips (Fig. 1f). Spermatheca U-shaped, long and rounded at apex (Fig. 2d).

Etymology

Dedicated to the first author’s mentor Prof. dr hab. Lech Borowiec (University of Wrocław, Poland), the world’s leading specialist in tortoise beetles.

Distribution

South Korea: Chungnam, Gangwon, Gyeongbuk, Daegu (Fig. 3a,b).

Remarks

The shape of the apical part of the male genitalia exhibits a certain degree of variation even within the same population. It is difficult to recognize a significant difference in the shape of the male genitalia between populations, but individuals from Yeongyang have a relatively large aedeagus. All specimens that we examined had a dark bluish-black dorsum with a weak metallic lustre, but a single specimen with a dark brass dorsum was found in Yecheon.

Mature larva and biology of Suinzona borowieci sp. nov. (Figs. 4, 5 and 6)

Diagnosis

The fourth (last) instar larva of S. borowieci sp. nov. is very similar to that of S. cyrtonoides comb. nov. in body shape, colouration and tubercular pattern. However, this species can be distinguished by the 4–5 small secondary tubercles between Dae and DLai on the meso- and metathorax and more densely setose bodies (1 large tubercle between Dae and DLai on the meso- and metathorax and less densely setose body in S. cyrtonoides).

Figure 4

Mature larva of Suinzona borowieci sp. nov.: (a) Dorsal habitus, (b) lateral habitus, (c) ventral habitus.

Full size image
Figure 5

Larval morphology of Suinzona borowieci sp. nov.: (a) Head, (b) maxillae and labium, (c) tibiotarsus and pretarsus, (d) mandible, (e) labrum and epipharynx, (f) Schematic presentation of tubercular patterns (top: prothorax; middle: mesothorax; bottom: 2nd abdominal segment).

Full size image
Figure 6

Host plants of Suinzona borowieci sp. nov.: (a) Arabis pendula L. from Yeongyang, (b) Urtica angustifolia Fisch. ex Hornem. from Yeongyang, (c) Aconitum pseudolaeve Nakai from Taebaek, (d) Isodon inflexus (Thunb.) Kudo from Yecheon; (e–f) A. pseudolaeve Nakai and U. angustifolia Fisch. ex Hornem. for laboratory tests (e) Adult from Yeongyang feeding on leaves, (f) larvae from Yecheon feeding on leaves.

Full size image

Description

Body length 8.1–8.8 mm, width 2.9–3.2 mm, head width 1.75–1.80 mm (n = 3). Body elongate, rather broad, widest at abdominal segments III–IV, thence moderately narrowed posteriorly and slightly convex dorsally (Fig. 4a). Head pale yellowish-brown, densely setose, with a blackish-brown V-shaped mark along frontal arms; lateral regions of epicrania largely blackish-brown; posterior half of clypeus brown to dark brown; apex of labrum and mandibles blackish-brown. General colouration of integument yellowish-white, but dorsal integument densely covered with minute brown spinules (Fig. 4b); dorsal tubercles dark brown and ventral ones unpigmented (Fig. 4c), both densely setose; spiracles blackish-brown. Legs pale yellow with apex of tibiotarsus and pretarsus brown. Eversible glands absent. Pseudopods present on abdominal segments VI–VII. Head. Hypognathous, rounded, strongly sclerotized (Fig. 5a). Epicranium with 72–77 pairs of setae of varying length; epicranial stem distinct; frontal arms V-shaped, slightly sinuate, not extending to antennal insertions; median endocarina distinct, extending to frontoclypeal suture. Frons slightly depressed medially with 25–29 pairs of setae of varying length. Clypeus almost straight at anterior margin with 3 pairs of setae. Labrum deeply concave anteriorly with 2 pairs of setae and 2 pairs of campaniform sensilla (Fig. 5e, left); epipharynx with 6–7 pairs of setae at anterior margin (Fig. 5e, right). Mandible robust, palmate and 5-toothed, with 4–5 setae and 3 campaniform sensilla; penicillus present (Fig. 5d). Maxillary palp 3-segmented; palpomere I rectangular with 2 setae and 2 campaniform sensilla; II swollen cylindrical with 3 setae and 1 campaniform sensillum; III subconical with 1 seta, 1 digitiform sensillum and 1 campaniform sensillum on sides and a group of peg-like sensilla at the apex; palpifer well developed with 2 setae (Fig. 5b). Mala rounded with 13–14 setae and 1 campaniform sensillum; stipes distinctly longer than wide with 12–14 setae; cardo with 2–3 setae. Labial palp 2-segmented; palpomere I rectangular with 1 campaniform sensillum; II subconical with 1 seta, 1 campaniform sensillum and a group of peg-like sensilla at the apex. Hypopharynx bilobed, densely covered with minute spinules; prementum with four pairs of setae and three pairs of campaniform sensilla; postmentum basolaterally covered with minute spinules, with 8–9 pairs of setae. Six stemmata present on each side, 4 of them located above the antenna and 2 behind the antenna. Antenna 3-segmented; antenomere I wider than long with 2 campaniform sensilla; II approximately as wide as long, with a conical sensorium and 3–4 min setae; III subconical with 5–6 min setae. Thorax. Prothorax with D-DL-EP (dorsal, dorsolateral and epipleural tubercles fused together, 164–179) largest; P (pleural tubercle, 9–11) and ES-SS (eusternal and sternellar tubercles fused, 6–7) unpigmented (Fig. 5f). Meso- and metathorax with dorsal tubercles more or less arranged in 3 transverse rows; Dai (dorsal anterior interior, 6–10) on both sides separated, smaller than Dae (dorsal anterior exterior, 11–15); DLai (dorsolateral anterior interior, 4–5); Dpi (dorsal posterior interior, 12–15); Dpe (dorsal posterior exterior, 10–13) smaller than Dpi; DLpi (dorsolateral posterior interior, 17–19); DLe (dorsolateral exterior, 40–47) large; dorsal region with 8–9 secondary tubercles, 3 of them located anterior to Dai and Dae, 4–5 between Dae and DLai and 1 anterior to DLe; EPa (epipleural anterior, 17–22) larger than EPp (epipleural posterior, 8–11), both unpigmented; P (9–13), SS (1) and ES (3–4) unpigmented; sternal region with 4–5 additional setae arising from weakly sclerotized base. Mesothoracic spiracles annuliform and largest. Legs moderately long, 5-segmented; tibiotarsus with 23–25 setae; pretarsus large, strongly curved, basal tooth well developed, with 1 short seta (Fig. 5c). Abdomen. Segments I–VI with dorsal tubercles arranged in 3 transverse rows; Dai (5–8) on both sides separated, smaller than Dae (13–14); DLae (12–14) larger than DLai (7); Dpi (16–19), Dpe (15–19) and DLp (24–29) transverse, subequal in size; dorsal region with 5–10 small secondary tubercles; EP (23–27), P (12–13), PS-SS (parasternal and sternellar tubercles fused, 5–7) and ES (5–7) unpigmented; as1 (secondary tubercle on antero-exterior part of ES, 1) and as2 (secondary tubercle between P and PS, 1); sternal region with 3–4 additional setae arising from weakly sclerotized base. Segment VII with Dai and Dae fused and Dpi and Dpe fused. Segments VIII with dorsal and dorso-lateral tubercles completely fused (30–37). Segment IX with dorsal to epipleural tubercles completely fused (34–36). Segment X not visible from above, with paired pygopods. Spiracles annuliform, present on segments I–VIII.

Host plants

Brassicaceae: Arabis pendula L.; Lamiaceae: Isodon inflexus (Thunb.) Kudo; Ranunculaceae: Aconitum pseudolaeve Nakai; Urticaceae: Urtica angustifolia Fisch. ex Hornem.

Biological notes

Suinzona borowieci sp. nov. is univoltine. Overwintered adults appear in late May. They mate and lay 15–18 eggs per cluster on the leaves of host plants in early June. Eggs are pale yellow to yellowish-orange and hatch after 8–9 days. The larvae are solitary during the instar stages and feed on the leaves. There are four larval instars, and pupation occurs in soil. The larvae take 14–16 days to pupate and then take 7–8 days to emerge as adults. Newly emerged adults are found during July. We observed larvae or adults of this species in nearby localities (~ 62 km), feeding on A. pendula L. (Fig. 6a) and U. angustifolia Fisch. ex Hornem. (Fig. 6b) from Yeongyang (at 1135 ~ 1190 m a.s.l.), A. pseudolaeve Nakai (Fig. 6c) from Taebaek (at 1,470 m a.s.l.), and I. inflexus (Thunb.) Kudo (Fig. 6d) from Yecheon (at 330 m a.s.l.). Each population showed a preference for its natural host plant but fed on other host plants and completed its life cycle in laboratory tests (Fig. 6e,f).

Suinzona cyrtonoides (Jacoby, 1885) comb. nov. (Figs. 1, 2 and 3)

Type locality

Japan: Kyushu, Kumamoto Prefecture, Konose.

Type material

Syntypes: 1 female (BMNH), Lectotype [mislabelled, not lectotype] // Type // DATA under card // Japan, G. Lewis, 1910–320. // Chrysomela crytonoides Jac. // Lectotype, Chrysomela crytonoides Jacoby, Designated. S. GE 2004 // Potaninia cyrtonoides Jacoby, Det. S. GE 2004 // Suinzona cyrtonoides (Jacoby, 1885) det. H.W. Cho 2014; 1 female (BMNH), Japan, G. Lewis, 1910–320. // Paralectotype // Paralectotype, Chrysomela crytonoides Jacoby, Designated. S. GE 2004 // Potaninia cyrtonoides Jacoby, Det. S. GE 2004 // Suinzona cyrtonoides (Jacoby, 1885) det. H.W. Cho 2014; 1 male (MCZC), Japan Lewis // 1st Jacoby Coll. // cyrtonoides Jac. // Type 17,474; 1 female (MCZC), Japan Lewis // 1st Jacoby Coll.

Other material

JAPAN – Kyushu: 1 male (BMNH), Yuyama 1883 // Japan, G. Lewis, 1910–320. // Paralectotype [mislabelled, not type series] // Paralectotype, Chrysomela crytonoides Jacoby, Designated. S. GE 2004 // Potaninia cyrtonoides Jacoby, Det. S. GE 2004 // Suinzona cyrtonoides (Jacoby, 1885) det. H.W. Cho 2014; Honshu: 3 males 2 females (KMNH), Nippara, Okutama, Tokyo, 5.VI.1955, Y. Tominaga; 2 males 3 females (BMNH), Mt. Mitake, Ome-shi, Tokyo, 15.VII.2005, Y. Komiya; 1 male (HSC), Chichibu, Saitama Pref., 18.VI.1984, M. Minami; 1 male (HSC), Tochigi, Sano-shi, Tanuma, 4.VI.2008, H. Ohkawa; 1 male (HSC), Gumma, Fujioka-shi, Mikabo-yama rindo, 8.VI.2009, H. Ohkawa; 1 male 2 females (HSC), same data as preceding one except 21.VII.2009; 1 male 1 female (HSC), same data as preceding one except 1.V.2010; Shikoku: 1 female (HSC), Tokushima, Yoshinokawa-shi, Mt. Kotsu-zan, 18.V.1987, S. Mano; 2 females (EUMJ), Tokushima, Mt. Tsurugi, 15.VII.1984, M. Miyatake; 1 male 1 female (EUMJ), Ehime: Omogo-Sibukusa, Kamiukena-gun, 5.VI.2005, Y. Satoh; 7 males (HCC), Ehime, Kamiukena, Kumakogen, Wakayama, 33° 43′ 59.4″ N, 133° 08′ 06.5″ E, 5.VI.2019, H.W. Cho & Y. Hiroyuki; 1 male (HSC), Ehime, Saijo-shi, Mt. Ishizuchizan, 30.V.2009, H. Suenaga; 2 males (HSC), Ehime, Saijo-shi, Nishinokawa, 16.V.2010, H. Suenaga; 1 male 1 female (HSC), Ehime, Saijo-shi, Nishinokawa, 5.VI.2010, H. Suenaga; 1 female (EUMJ), Jiyoshi-toge, Ehime Pref., 26.IV.1976, A. Oda; 1 male (EUMJ), Mt. Ishizuchi, Ehime pref., 1.VI.1975, H. Kan; 1 female (EUMJ), Iwayaji, Ehime Pref., 1.VI.1969, M. Miyatake; 1 male (EUMJ), Ehime: Yokono, 750 m alt. Yanadani-mura, 7.V.1994, M. Sakai; 1 male (EUMJ), Ehime: Yokono, 660 m alt. Yanadani-mura, 6.V.1994, M. Sakai; 1 female (EUMJ), Ehime: Yokono, 700 m alt. Yanadani-mura, 15.VII.1994, M. Sakai.

Distribution

Japan: Honshu, Shikoku, Kyushu (Fig. 3a).

Host plants

Urticaceae: Boehmeria spicata (Thunb.) Thunb., Boehmeria tricuspis (Hance) Makino.

Biological notes

Detailed descriptions of larvae and pupae and the life cycle have been published by Kimoto16 and Kimoto and Takizawa11. Its life cycle is similar to that of S. borowieci sp. nov., but they feed on different host plants.

Remarks

The apical part of the aedeagus is highly variable, narrow to broad, apex narrowly to widely rounded or weakly truncate, mainly with two weak or strong denticles on the apicolateral margin. The aedeagus of the type specimen is narrowly rounded without apicolateral denticles (Fig. 2e). However, we were not able to find an obvious tendency in the morphological variation of the aedeagus at the intrapopulation or interpopulation level. Chrysomela cyrtonoides Jacoby, 1885 was described from Japan. Later, it was transferred to the genus Potaninia by Chûjô and Kimoto17 and then accepted by various authors until now. However, we found that all materials of P. cyrtonoides have reduced hind wings (Fig. 1d), which are the key diagnostic features of the genus Suinzona, and molecular analysis also suggests its placement in Suinzona. Therefore, Suinzona cyrtonoides (Jacoby, 1885) comb. nov. is proposed. Jacoby18 gave ‘Konose’ as the type locality and used at least two specimens collected by G. Lewis for the description. A male specimen (BMNH) from ‘Yuyama’, designated by Ge et al.3 as a lectotype, did not belong to the type series of S. cyrtonoides and thus lost its lectotype status (ICZN: Article 74.2). Indeed, a female specimen (BMNH) was mislabelled as a lectotype. We were able to find four specimens collected from Japan that might belong to the type series of S. cyrtonoides in the G. Lewis collection (BMNH, MCZC), but more precise locality data were not available. Therefore, we regard them as syntypes and defer selection of a lectotype.

Molecular phylogenetic analyses

It is evident from the clarified phylogenetic inference based on mitogenomes that the genus Suinzona differs from the genus Potaninia, S. borowieci sp. nov. as the sister species of S. cyrtonoides (Fig. 7a). The phylogenetic inferences included a total of 20 mitogenomes of Chrysomelinae and outgroups of Galerucinae (Supplementary Table S1). The complete mitogenomes of the four Suinzona species and one Potaninia species (incomplete) were newly sequenced in the present study. Each mitogenome contains a typical set of mitochondrial genes (13 PCGs, 22 tRNAs and two rRNAs) and a control region. Phylogenetic trees based on ML and BI inferences revealed the presence of two well-supported clades (Chrysomelini and Doryphorini + Entomoscelini + Gonioctenini), placing the genus Suinzona as the sister group of the genus Potaninia. This result matched the morphological character of the hind wing. The COI haplotype network of the genus Suinzona complex (Fig. 7b) confirms the previous results and shows that the currently known single species is well distinguished as a species. Two independent networks were completely separated without any connection due to the existence of the mutation (62 steps) exceeding the 95% parsimony limits between them.

Figure 7

Phylogenetic tree and parsimonious network: (a) Bayesian consensus tree inferred from the combined mitochondrial 13 PCGs + 2 rRNA gene. Bayesian inference (left) and maximum likelihood (right) support values are shown on the branch nodes. Only the values over 70% are reported, (b) Parsimonious network of COI haplotypes. Circles correspond to haplotypes, the frequency and geographic origin of which are indicated by circle size. The geographical origins of the haplotypes are noted at the bottom right of the figure.

Full size image

Key to Suinzona borowieci sp. nov. and related species

1. Hind wings well developed (Fig. 1e); humeral calli present; trichobothria present on anterior angles of pronotum; lateral margins of pronotum distinctly visible from above. China, India, Laos, Myanmar, Thailand and Vietnam……………………………………………………………… Potaninia assamensis (Baly, 1879)

– Hind wings reduced (Fig. 1c,d); humeral calli absent; trichobothria absent on anterior angles of pronotum; lateral margins of pronotum not or barely visible from above. China, Korea and Japan……………………… 2

2. Aedeagus with apex of flagellum quadrifid (Fig. 1f,g). South Korea, Japan……………. 3

– Aedeagus with apex of flagellum varied in shape, but not quadrifid (see Ge et al.3 for key to 23 species). China (Sichuan, Yunnan)……………………………………………… Suinzona spp.

3. Larger, body length 5.5–7.0 mm; elytra more densely punctate (Fig. 1a); aedeagus larger and broader (Fig. 2c). South Korea…………………………………. Suinzona borowieci sp. nov.

– Smaller, body length 4.8–6.0 mm; elytra less densely punctate (Fig. 1d); aedeagus smaller and narrower (Fig. 2e). Japan…………………………….. Suinzona cyrtonoides (Jacoby, 1885)


Source: Ecology - nature.com

Electrifying cement with nanocarbon black

In-stream turbines for rethinking hydropower development in the Amazon basin