Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 114, 813–822 (2012).
Google Scholar
United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248 (2017).
Malhi, Y., Adu-Bredu, S., Asare, R. A., Lewis, S. L. & Mayaux, P. African rainforests: past, present and future. Phil. Trans. R. Soc. B 368, 20120312 (2013).
Google Scholar
James, R., Washington, R. & Rowell, D. P. Implications of global warming for the climate of African rainforests. Phil. Trans. R. Soc. B 368, 20120298 (2013).
Google Scholar
Abernethy, K., Maisels, F. & White, L. J. Environmental issues in Central Africa. Annu. Rev. Environ. Resour. 41, 1–33 (2016).
Google Scholar
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Google Scholar
De Wasseige, C., Tadoum, M., Atyi, E. & Doumenge, C. The Forests of the Congo Basin: Forests and Climate Change (Weyrich, 2015).
Stévart, T. et al. A third of the tropical African flora is potentially threatened with extinction. Sci. Adv. 5, eaax9444 (2019).
Google Scholar
Parmentier, I. et al. The odd man out? Might climate explain the lower tree α-diversity of African rain forests relative to Amazonian rain forests? J. Ecol. 95, 1058–1071 (2007).
Google Scholar
Réjou-Méchain, M. et al. Regional variation in tropical forest tree species composition in the Central African Republic: an assessment based on inventories by forest companies. J. Trop. Ecol. 24, 663–674 (2008).
Google Scholar
Réjou-Méchain, M. et al. Tropical tree assembly depends on the interactions between successional and soil filtering processes. Glob. Ecol. Biogeogr. 23, 1440–1449 (2014).
Google Scholar
Fayolle, A. et al. Geological substrates shape tree species and trait distributions in African moist forests. PLoS One 7, e42381 (2012).
Google Scholar
Fayolle, A. et al. Patterns of tree species composition across tropical African forests. J. Biogeogr. 41, 2320–2331 (2014).
Google Scholar
Droissart, V. et al. Beyond trees: biogeographical regionalization of tropical Africa. J. Biogeogr. 45, 1153–1167 (2018).
Google Scholar
Sosef, M. S. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).
Google Scholar
Parmentier, I. et al. Predicting alpha diversity of African rain forests: models based on climate and satellite-derived data do not perform better than a purely spatial model. J. Biogeogr. 38, 1164–1176 (2011).
Google Scholar
Bry, X., Trottier, C., Verron, T. & Mortier, F. Supervised component generalized linear regression using a PLS-extension of the fisher scoring algorithm. J. Multivariate Anal. 119, 47–60 (2013).
Google Scholar
ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).
Google Scholar
Slik, J. W. et al. Soils on exposed Sunda shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia. Proc. Natl Acad. Sci. USA 108, 12343–12347 (2011).
Google Scholar
Philippon, N. et al. The light-deficient climates of western Central African evergreen forests. Environ. Res. Lett. 14, 034007 (2019).
Google Scholar
Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).
Google Scholar
Beale, C. M., Lennon, J. J. & Gimona, A. Opening the climate envelope reveals no macroscale associations with climate in European birds. Proc. Natl Acad. Sci. USA 105, 14908–14912 (2008).
Google Scholar
Deblauwe, V. et al. Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics. Glob. Ecol. Biogeogr. 25, 443–454 (2016).
Google Scholar
Maguire, K. C. et al. Controlled comparison of species- and community-level models across novel climates and communities. Proc. R. Soc. B 283, 20152817 (2016).
Google Scholar
Morin-Rivat, J. et al. Present-day central African forest is a legacy of the 19th century human history. eLife 6, e20343 (2017).
Google Scholar
Ricklefs, R. E. Intrinsic dynamics of the regional community. Ecol. Lett. 18, 497–503 (2015).
Google Scholar
Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).
Google Scholar
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
Google Scholar
Rüger, N. et al. Demographic trade-offs predict tropical forest dynamics. Science 368, 165–168 (2020).
Google Scholar
Ouédraogo, D.-Y. et al. The determinants of tropical forest deciduousness: disentangling the effects of rainfall and geology in central Africa. J. Ecol. 104, 924–935 (2016).
Google Scholar
Shipley, B. From Plant Traits to Vegetation Structure: Chance and Selection in the Assembly of Ecological Communities (Cambridge University Press, 2010).
Feeley, K. J. & Silman, M. R. Biotic attrition from tropical forests correcting for truncated temperature niches. Glob. Change Biol. 16, 1830–1836 (2010).
Google Scholar
Parry, M. et al. Climate Change 2007 – Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the IPCC (Cambridge University Press, 2007).
Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8, e65427 (2013).
Google Scholar
Lachenaud, O., Stévart, T., Ikabanga, D., Ndjabounda, E. C. N. & Walters, G. The littoral forests of the Libreville area (Gabon) and their importance for conservation: description of a new endemic species (Rubiaceae). Plant Ecol. Evol. 146, 68–74 (2013).
Google Scholar
Aguirre-Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett. 22, 855–865 (2019).
Google Scholar
Claeys, F. et al. Climate change would lead to a sharp acceleration of Central African forests dynamics by the end of the century. Environ. Res. Lett. 14, 044002 (2019).
Google Scholar
McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).
Google Scholar
Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).
Google Scholar
Purvis, A. Phylogenetic approaches to the study of extinction. Annu. Rev. Ecol. Evol. Syst. 39, 301–319 (2008).
Google Scholar
Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).
Google Scholar
Neves, D. M. et al. Evolutionary diversity in tropical tree communities peaks at intermediate precipitation. Sci. Rep. 10, 1188 (2020).
Google Scholar
Letcher, S. G. Phylogenetic structure of angiosperm communities during tropical forest succession. Proc. R. Soc. B 277, 97–104 (2010).
Google Scholar
Letouzey, R. Notice de la carte phytogéographique du Cameroun au 1:500000 (Institut de la Carte Internationale de la végétation Toulouse-France et Institut de la recherche agronomique (Herbier National) Yaoundé-Cameroun, 1985).
Boulvert, Y. Carte phytogéographique de la République Centrafricaine (feuille oust–feuille est) à 1 000 000 (Editions de l’ORSTOM, 1986).
Fyllas, N. M., Quesada, C. A. & Lloyd, J. Deriving plant functional types for Amazonian forests for use in vegetation dynamics models. Perspect. Plant Ecol. Evol. Syst. 14, 97–110 (2012).
Google Scholar
Mitchard, E. T. A. et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 23, 935–946 (2014).
Google Scholar
Visconti, P., Pressey, R. L., Bode, M. & Segan, D. B. Habitat vulnerability in conservation planning—when it matters and how much. Conserv. Lett. 3, 404–414 (2010).
Google Scholar
Putz, F. E. et al. Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conserv. Lett. 5, 296–303 (2012).
Google Scholar
Gourlet-Fleury, S. et al. Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa. Phil. Trans. R. Soc. B 368, 20120302 (2013).
Google Scholar
Clark, C. J., Poulsen, J. R., Malonga, R. & Elkan, P. W. Jr. Logging concessions can extend the conservation estate for Central African tropical forests. Conserv. Biol. 23, 1281–1293 (2009).
Google Scholar
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
Google Scholar
Réjou-Méchain, M. et al. Detecting large-scale diversity patterns in tropical trees: can we trust commercial forest inventories? For. Ecol. Manage. 261, 187–194 (2011).
Google Scholar
African Plant Database v.3.4.0 (Conservatoire et Jardin Botaniques de la Ville de Genève and South African National Biodiversity Institute, Pretoria, accessed 10 February 2017).
The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105–121 (2009).
Google Scholar
Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys 74, 1–18 (2016).
Google Scholar
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
Google Scholar
Zanne, A. E. et al. Data from: towards a worldwide wood economic spectrum. Dryad https://doi.org/10.5061/dryad.234 (2009).
Gourlet-Fleury, S. et al. Environmental filtering of dense‐wooded species controls above‐ground biomass stored in African moist forests. J. Ecol. 99, 981–990 (2011).
Google Scholar
Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).
Google Scholar
Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).
Google Scholar
Bénédet, F. et al. CoForTraits, African plant traits information database v.1.0, https://doi.org/10.18167/DVN1/Y2BIZK (2013).
Davies, T. J. et al. Phylogenetic conservatism in plant phenology. J. Ecol. 101, 1520–1530 (2013).
Google Scholar
Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).
Google Scholar
Menzel, A. Phenology: its importance to the global change community. Clim. Change 54, 379 (2002).
Google Scholar
Borchert, R., Rivera, G. & Hagnauer, W. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34, 27–39 (2002).
Google Scholar
Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008).
Google Scholar
Schamp, B. S. & Aarssen, L. W. The assembly of forest communities according to maximum species height along resource and disturbance gradients. Oikos 118, 564–572 (2009).
Google Scholar
New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).
Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surface for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Google Scholar
Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).
Google Scholar
Nachtergaele, F. et al. The harmonized world soil database. In Proc. 19th World Congress of Soil Science, Soil Solutions for a Changing World (eds Gilkes, R. & Prakongkep, N.) 34–37 (International Union of Soil Sciences, 2010).
Woolmer, G. et al. Rescaling the human footprint: a tool for conservation planning at an ecoregional scale. Landsc. Urban Plan. 87, 42–53 (2008).
Google Scholar
Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
Google Scholar
Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).
Google Scholar
Linard, C., Gilbert, M., Snow, R. W., Noor, A. M. & Tatem, A. J. Population distribution, settlement patterns and accessibility across Africa in 2010. PLoS One 7, e31743 (2012).
Google Scholar
Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 3, 108–139 (2019).
Boulesteix, A.-L. & Strimmer, K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief. Bioinform. 8, 32–44 (2007).
Google Scholar
Carrascal, L. M., Galván, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).
Google Scholar
Tenenhaus, M. La Régression PLS: Théorie et Pratique (Editions Technip, 1998).
Sabatier, R., Lebreton, J. D. & Chessel, D. in Multiway Data Analysis (eds Coppi, R. & Bolasco, S.) 341–352 (1989).
Ter Braak, C. J. F. in Theory and Models In Vegetation Science (eds Prentice, I. C. & van der Maarel, E.) 69–77 (Springer, 1987).
Bry, X. & Verron, T. THEME: THEmatic model exploration through multiple co-structure maximization. J. Chemometr. 29, 637–647 (2015).
Google Scholar
Cornu, G., Mortier, F., Trottier, C. & Bry, X. SCGLR: supervised component generalized linear regression. R version 3.0 https://cran.r-project.org/web/packages/SCGLR/index.html (2016).
Ward, J. H. Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).
Google Scholar
Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).
Google Scholar
Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gGussian finite mixture models. R J. 8, 289–317 (2016).
Google Scholar
Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30, 609–628 (2007).
Google Scholar
Renard, D. et al. RGeostats: the geostatistical package v.11.0. 1 http://rgeostats.free.fr/ (MINES ParisTech, 2014).
Platts, P. J., Omeny, P. A. & Marchant, R. AFRICLIM: high-resolution climate projections for ecological applications in Africa. Afr. J. Ecol. 53, 103–108 (2015).
Google Scholar
Janssens, S. B. et al. A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses. Biodivers. Data J. 8, e39677 (2020).
Google Scholar
Abouheif, E. A method for testing the assumption of phylogenetic independence in comparative data. Evol. Ecol. Res. 1, 895–909 (1999).
Chao, A., Chiu, C.-H. & Jost, L. Phylogenetic diversity measures based on Hill numbers. Phil. Trans. R. Soc. B 365, 3599–3609 (2010).
Google Scholar
R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2017).
Chessel, D., Dufour, A. B. & Thioulouse, J. The ade4 package – I: one-table methods. R News 4, 5–10 (2004).
Lafarge, T. & Pateiro-Lopez, B. alphashape3d: implementation of the 3D alpha-shape for the reconstruction of 3D sets from a point cloud. R version 1.3.1 https://cran.r-project.org/web/packages/alphashape3d/index.html (2017).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Hijmans, R. J. raster: geographic data analysis and modelling. R version 3.4-5 https://cran.r-project.org/web/packages/raster/index.html (2017).
Marcon, E. & Hérault, B. entropart: An R package to measure and partition diversity. J. Stat. Softw. 67, 1–26 (2015).
Dufrêne, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
Source: Ecology - nature.com