in

Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin

  • 1.

    Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).

    Article 

    Google Scholar 

  • 2.

    Merino, N. et al. Living at the extremes: extremophiles and the limits of life in a planetary context. Front. Microbiol. 10, 780 (2019).

    Article 

    Google Scholar 

  • 3.

    Colman, D. R. et al. Geobiological feedbacks and the evolution of thermoacidophiles. ISME J. 12, 225–236 (2018).

    Article 

    Google Scholar 

  • 4.

    Reveillaud, J. et al. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ. Microbiol. 18, 1970–1987 (2016).

    Article 

    Google Scholar 

  • 5.

    Lau, M. C. Y. et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc. Natl Acad. Sci. USA 113, 7927–7936 (2016).

    Article 

    Google Scholar 

  • 6.

    Momper, L., Jungbluth, S. P., Lee, M. D. & Amend, J. P. Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. ISME J. 11, 2319–2333 (2017).

    Article 

    Google Scholar 

  • 7.

    Brazelton, W. J. et al. Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy. PeerJ 5, e2945 (2017).

    Article 

    Google Scholar 

  • 8.

    Havig, J. R., Raymond, J., Meyer-Dombard, D. R., Zolotova, N. & Shock, E. L. Merging isotopes and community genomics in a siliceous sinter-depositing hot spring. J. Geophys. Res. Biogeosci. 116, G01005 (2011).

    Article 

    Google Scholar 

  • 9.

    Power, J. F. et al. Microbial biogeography of 925 geothermal springs in New Zealand. Nat. Commun. 9, 2876 (2018).

    Article 

    Google Scholar 

  • 10.

    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).

    Article 

    Google Scholar 

  • 11.

    Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015).

    Article 

    Google Scholar 

  • 12.

    Brovarone, A. V. et al. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere. Nat. Commun. 11, 3880 (2020).

    Article 

    Google Scholar 

  • 13.

    Plümper, O. et al. Subduction zone forearc serpentinites as incubators for deep microbial life. Proc. Natl Acad. Sci. USA 114, 4324–4329 (2017).

    Article 

    Google Scholar 

  • 14.

    Syracuse, E. M. & Abers, G. A. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem. Geophys. Geosyst. 7, Q05017 (2006).

    Article 

    Google Scholar 

  • 15.

    Shaw, A. M., Hilton, D. R., Fischer, T. P., Walker, J. A. & Alvarado, G. E. Contrasting He–C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet. Sci. Lett. 214, 499–513 (2003).

    Article 

    Google Scholar 

  • 16.

    Barry, P. H. et al. Forearc carbon sink reduces long-term volatile recycling into the mantle. Nature 568, 487–492 (2019).

    Article 

    Google Scholar 

  • 17.

    Arce-Rodríguez, A. et al. Thermoplasmatales and sulfur-oxidizing bacteria dominate the microbial community at the surface water of a CO2-rich hydrothermal spring located in Tenorio Volcano National Park, Costa Rica. Extremophiles 23, 177–187 (2019).

    Article 

    Google Scholar 

  • 18.

    Crespo-Medina, M. et al. Methane dynamics in a tropical serpentinizing environment: the Santa Elena ophiolite, Costa Rica. Front. Microbiol. 8, 916 (2017).

    Article 

    Google Scholar 

  • 19.

    Probst, A. J. & Moissl-Eichinger, C. “Altiarchaeales”: uncultivated Archaea from the subsurface. Life https://doi.org/10.3390/life5021381 (2015).

  • 20.

    Giggenbach, W. F. Geothermal solute equilibria, derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta 52, 2749–2765 (1988).

    Article 

    Google Scholar 

  • 21.

    Giggenbach, W. F. & Soto, R. C. Isotopic and chemical composition of water and steam discharges from volcanic–magmatic–hydrothermal systems of the Guanacaste Geothermal Province, Costa Rica. Appl. Geochem. 7, 309–332 (1992).

    Article 

    Google Scholar 

  • 22.

    Rodríguez, A. & van Bergen, M. J. Superficial alteration mineralogy in active volcanic systems: an example of Poás volcano, Costa Rica. J. Volcanol. Geotherm. Res. 346, 54–80 (2017).

    Article 

    Google Scholar 

  • 23.

    Chan, C. S., Fakra, S. C., Emerson, D., Fleming, E. J. & Edwards, K. J. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J. 5, 717–727 (2011).

    Article 

    Google Scholar 

  • 24.

    Lücke, O. H. & Arroyo, I. G. Density structure and geometry of the Costa Rican subduction zone from 3-D gravity modeling and local earthquake data. Solid Earth 6, 1169–1183 (2015).

    Article 

    Google Scholar 

  • 25.

    Protti, M., Gündel, F. & McNally, K. The geometry of the Wadati–Benioff zone under southern Central America and its tectonic significance: results from a high-resolution local seismographic network. Phys. Earth Planet. Inter. 84, 271–287 (1994).

    Article 

    Google Scholar 

  • 26.

    de Moor, J. M. et al. A new sulfur and carbon degassing inventory for the Southern Central American Volcanic Arc: the importance of accurate time-series data sets and possible tectonic processes responsible for temporal variations in arc-scale volatile emissions: new volatile budget for Central America. Geochem. Geophys. Geosyst. 18, 4437–4468 (2017).

    Article 

    Google Scholar 

  • 27.

    Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

    Article 

    Google Scholar 

  • 28.

    Kim, M. S., Jo, S. K., Roh, S. W. & Bae, J. W. Alishewanella agri sp. nov., isolated from landfill soil. Int. J. Syst. Evol. Microbiol. 60, 2199–2203 (2010).

    Article 

    Google Scholar 

  • 29.

    Chen, W. M. et al. Aquabacterium limnoticum sp. nov., isolated from a freshwater spring. Int. J. Syst. Evol. Microbiol. 62, 698–704 (2012).

    Article 

    Google Scholar 

  • 30.

    Garrity, G. M. & Bell, J. A. Bergey’s Manual of Systematics of Archaea and Bacteria (Bergey’s Manual Trust, 2015).

  • 31.

    Hayashi, N. R., Ishida, T., Yokota, A., Kodama, T. & Igarashi, Y. Hydrogenophilus thermoluteolus gen. nov., sp. nov., a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 49, 783–786 (1999).

    Article 

    Google Scholar 

  • 32.

    Berg, I. A. et al. Autotrophic carbon fixation in archaea. Nat. Rev. Microbiol. 8, 447–460 (2010).

    Article 

    Google Scholar 

  • 33.

    Giovannelli, D. et al. Insight into the evolution of microbial metabolism from the deep-branching bacterium, Thermovibrio ammonificans. eLife 6, e18990 (2017).

    Article 

    Google Scholar 

  • 34.

    Yokochi, R. et al. Noble gas radionuclides in Yellowstone geothermal gas emissions: a reconnaissance. Chem. Geol. 339, 43–51 (2013).

    Article 

    Google Scholar 

  • 35.

    Harris, R. N. & Wang, K. Thermal models of the Middle America Trench at the Nicoya Peninsula, Costa Rica. Geophys. Res. Lett. 29, 6-1–6-4 (2010).

    Google Scholar 

  • 36.

    Jelen, B. I., Giovannelli, D. & Falkowski, P. G. The role of microbial electron transfer in the coevolution of the biosphere and geosphere. Annu. Rev. Microbiol. 70, 45–62 (2016).

    Article 

    Google Scholar 

  • 37.

    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    Article 

    Google Scholar 

  • 38.

    Tassi, F. et al. The geothermal resource in the Guanacaste region (Costa Rica): new hints from the geochemistry of naturally discharging fluids. Front. Earth Sci. 6, 69 (2018).

    Article 

    Google Scholar 

  • 39.

    Tassi, F., Vaselli, O., Barboza, V., Fernandez, E. & Duarte, E. Fluid geochemistry and seismic activity in the period 1998–2002 at Turrialba Volcano (Costa Rica). Ann. Geophys. 47, 4 (2004).

    Google Scholar 

  • 40.

    Barry, P. H. et al. Helium, inorganic and organic carbon isotopes of fluids and gases across the Costa Rica convergent margin. Sci. Data https://doi.org/10.1038/s41597-019-0302-4 (2019).

  • 41.

    Vetriani, C., Jannasch, H. W., MacGregor, B. J., Stahl, D. A. & Reysenbach, A.-L. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl. Environ. Microbiol. 65, 4375–4384 (1999).

    Article 

    Google Scholar 

  • 42.

    Wright, J. J., Lee, S., Zaikova, E., Walsh, D. A. & Hallam, S. J. DNA extraction from 0.22 μm Sterivex filters and cesium chloride density gradient centrifugation. JOVE https://doi.org/10.3791/1352 (2009).

  • 43.

    Teare, J. M. et al. Measurement of nucleic acid concentrations using the DyNA QuantTM and the GeneQuantTM. Biotechniques 22, 1170–1174 (1997).

    Article 

    Google Scholar 

  • 44.

    Simbolo, M. et al. DNA qualification workflow for next generation sequencing of histopathological samples. PLoS ONE 8, e62692 (2013).

    Article 

    Google Scholar 

  • 45.

    Giovannelli, D. et al. Diversity and distribution of prokaryotes within a shallow-water pockmark field. Front. Microbiol. 7, 941 (2016).

    Article 

    Google Scholar 

  • 46.

    Huse, S. M. et al. VAMPS: a website for visualization and analysis of microbial population structures. BMC Bioinformatics 15, 41 (2014).

    Article 

    Google Scholar 

  • 47.

    Huse, S. M. et al. Comparison of brush and biopsy sampling methods of the ileal pouch for assessment of mucosa-associated microbiota of human subjects. Microbiome 2, 5 (2014).

    Article 

    Google Scholar 

  • 48.

    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    Article 

    Google Scholar 

  • 49.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Article 

    Google Scholar 

  • 50.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 

    Google Scholar 

  • 51.

    Zhu, C. et al. Functional sequencing read annotation for high precision microbiome analysis. Nucleic Acids Res. 46, e23 (2018).

    Article 

    Google Scholar 

  • 52.

    R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

  • 53.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    Article 

    Google Scholar 

  • 54.

    vegan (CRAN, 2019).

  • 55.

    Hamilton, N. E. & Ferry, M. ggtern: ternary diagrams using ggplot2. J. Stat. Softw. 87, 1–17 (2018).

    Article 

    Google Scholar 

  • 56.

    Stekhoven, D. J. & Buhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).

    Article 

    Google Scholar 

  • 57.

    Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. VSURF: an R package for variable selection using random forests. R J. 7, 1–19 (2015).

    Article 

    Google Scholar 

  • 58.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

  • 59.

    Sheik, C. S. et al. Identification and removal of contaminant sequences from ribosomal gene databases: lessons from the Census of Deep Life. Front. Microbiol. 9, 840 (2018).

    Article 

    Google Scholar 

  • 60.

    Sugimori, K. et al. Microbial life in the acid lake and hot springs of Poas Volcano, Costa Rica. In Proc. Colima Volcano International Meeting (2002).

  • 61.

    Mcmurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

    Article 

    Google Scholar 

  • 62.

    Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).

    Article 

    Google Scholar 

  • 63.

    Giovannelli, D. et al. Large-scale distribution and activity of prokaryotes in deep-sea surface sediments of the Mediterranean Sea and the adjacent Atlantic Ocean. PLoS ONE 8, e72996 (2013).

  • 64.

    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    Google Scholar 

  • 65.

    Schruben, P. G. Geology and Resource Assessment of Costa Rica DDS-19-R (USGS, 1987).

  • 66.

    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    Article 

    Google Scholar 

  • 67.

    Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).

    Article 

    Google Scholar 

  • 68.

    Schwager, E., Mallick, H., Ventz, S. & Huttenhower, C. A Bayesian method for detecting pairwise associations in compositional data. PLoS Comput. Biol. 13, e1005852 (2017).

    Article 

    Google Scholar 

  • 69.

    Zar, J. H. Significance testing of the spearman rank correlation coefficient. J. Am. Stat. Assoc. 67, 578–580 (1972).

    Article 

    Google Scholar 

  • 70.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 1695, 1–9 (2006).

    Google Scholar 

  • 71.

    Braun, S. et al. Microbial turnover times in the deep seabed studied by amino acid racemization modelling. Sci. Rep. 7, 5680 (2017).

    Article 

    Google Scholar 

  • 72.

    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    Article 

    Google Scholar 

  • 73.

    McMahon, S. & Parnell, J. Weighing the deep continental biosphere. FEMS Microbiol. Ecol. 87, 113–120 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The serotonin transporter gene and female personality variation in a free-living passerine

    Keeping humanity central to solving climate change