in

Diet and trophic niche of the invasive signal crayfish in the first invaded Italian stream ecosystem

  • 1.

    Holdich, D. M. M., Reynolds, J. D. D., Souty-Grosset, C. & Sibley, P. J. J. A review of the ever increasing threat to European crayfish from non- indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst. 11, 394–395 (2009).

    Google Scholar 

  • 2.

    Kouba, A., Petrusek, A. & Kozák, P. Continental-wide distribution of crayfish species in Europe: Update and maps. Knowl. Manag. Aquat. Ecosyst. 05, 413 (2014).

    Google Scholar 

  • 3.

    Edgerton, B. F. et al. Understanding the causes of disease in European freshwater crayfish. Conserv. Biol. 18, 1466–1474 (2004).

    Article 

    Google Scholar 

  • 4.

    Jussila, J., Vrezec, A., Makkonen, J., Kortet, R. & Kokko, H. Invasive crayfish and their invasive diseases in Europe with the focus on the virulence evolution of the crayfish plague invasive crayfish and their invasive diseases. In Biological Invasions in Changing Ecosystems (ed. Canning-Clode, J.) 183–204 (De Gruyter Open Ltd, 2015).

    Google Scholar 

  • 5.

    Nyström, P. Ecological impact of introduced and native crayfish on freshwater communities: European perspectives. In Crayfish in Europe as Alien Species – How to Make the Best of Bad Situation? (eds Gherardi, F. & Holdich, D. M.) 63–85 (Rotterdam, 1999).

    Google Scholar 

  • 6.

    McCarthy, J.M., Hein, C.L., Olden, J.D. & Vander Zanden, M.J. Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. Freshw. Biol. 51, 224–235 (2006).

  • 7.

    Twardochleb, L. A., Julian, D. & Larson, E. R. A global meta-analysis of the ecological impacts of nonnative crayfish. Fresh. Sci. 4, 1367–1382 (2013).

    Article 

    Google Scholar 

  • 8.

    Galib, S. M., Findlay, J. S. & Lucas, M. C. Strong impacts of signal crayfish invasion on upland stream fish and invertebrate communities. Freshw. Biol. 66, 223–240 (2021).

    Article 

    Google Scholar 

  • 9.

    Rosenthal, S.K., Stevens, S.S. & Lodge, D.M. Whole-lake effects of invasive crayfish (Orconectes spp.) and the potential for restoration. Can. J. Fish. Aquat. Sci. 63, 1276–1285 (2006).

  • 10.

    Parkyn, S. M., Collier, K. J. & Hicks, B. J. New Zealand stream crayfish: functional omnivores but trophic predators?. Freshw. Biol. 46, 641–652 (2001).

    Article 

    Google Scholar 

  • 11.

    Stenroth, P. et al. Stable isotopes as an indicator of diet in omnivorous crayfish (Pacifastacus leniusculus): The influence of tissue, sample treatment, and season. Can. J. Fish. Aquat. Sci. 63, 821–831 (2006).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Correia, A. M. Food choice by the introduced crayfish Procambarus clarkii food choice by the introduced crayfish Procambarus clarkii. Ann. Zool. Fenn. 40, 517–528 (2014).

    Google Scholar 

  • 13.

    Abrahamsson, S. A. Dynamics of an isolated population of the crayfish, Astacus astacus Linneo. Oikos 17, 96–107 (1966).

    Article 

    Google Scholar 

  • 14.

    France, R. Ontogenetic shift in crayfish δ13C as a measure of land-water ecotonal coupling. Oecologia 107, 239–242 (1996).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Guan, R. Z. & Wiles, P. R. Feeding ecology of the signal crayfish Pacifastacus leniusculus in a British lowland river. Aquaculture 169, 177–193 (1998).

    Article 

    Google Scholar 

  • 16.

    Hanson, J. M., Chambers, P. A. & Prepas, E. E. Selective foraging by the crayfish Orconectes virilis and its impact on macroinvertebrates. Freshw. Biol. 24, 69–80 (1990).

    Article 

    Google Scholar 

  • 17.

    Chambers, P. A., Hanson, J. M., Burke, J. M. & Prepas, E. E. The impact of the crayfish Orconectes virilis on aquatic macrophytes. Freshw. Biol. 24, 81–91 (1990).

    Article 

    Google Scholar 

  • 18.

    Usio, N. & Townsend, C. R. Functional significance of crayfish in stream food webs : Roles of omnivory, substrate heterogeneity and sex. Oikos 98, 512–522 (2002).

    Article 

    Google Scholar 

  • 19.

    Bondar, C. A., Bottriell, K., Zeron, K. & Richardson, J. S. Does trophic position of the omnivorous signal crayfish (Pacifastacus leniusculus) in a stream food web vary with life history stage or density?. Can. J. Fish. Aquat. Sci. 62, 2632–2639 (2005).

    Article 

    Google Scholar 

  • 20.

    Dekar, M. P., Magoulick, D. D. & Huxel, G. R. Shifts in the trophic base of intermittent stream food webs. Hydrobiologia 635, 263–277 (2009).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Evans-White, M. A., Dodds, W. K. & Whiles, M. R. Ecosystem significance of crayfishes and stonerollers in a prairie stream: Functional differences between co-occurring omnivores. J. N. Am. Benthol. Soc. 22, 423–441 (2003).

    Article 

    Google Scholar 

  • 22.

    Machino, Y. Présence de l’écrevisse de Californie (Pacifastacus leniusculus) en Italie. L’Astaciculteur France 52, 2–5 (1997).

    Google Scholar 

  • 23.

    Capurro, M. et al. The signal crayfish, Pacifastacus leniusculus (Dana, 1852) [Crustacea: Decapoda: Astacidae], in the Brugneto Lake (Liguria, NW Italy). The beginning of the invasion of the River Po watershed? Aquat. Invas. 2, 17–24 (2007).

  • 24.

    Candiotto, A., Delmastro, G. B., Dotti, L. & Sindaco, R. Pacifastacus leniusculus (Dana, 1852), un nuovo gambero esotico naturalizzato in Piemonte (Crustacea, Decapoda, Astacidae). Riv. Piemontese Storia Nat. 31, 73–82 (2010).

    Google Scholar 

  • 25.

    Ghia, D. et al. Distribuzione e naturalizzazione del gambero invasivo Pacifastacus leniusculus nel torrente Valla (Italia nord-occidentale). Ital. J. Freshw. Ichthyol. 4, 101–108 (2017).

    Google Scholar 

  • 26.

    Füreder, L. et al. Austropotamobius pallipes. In The IUCN Red List of Threatened Species 2010: e.T2430A9438817 (2010).

  • 27.

    Almeida, D., Ellis, A., England, J. & Copp, G. H. Time-series analysis of native and non-native crayfish dynamics in the Thames River Basin (south-eastern England). Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 192–202 (2014).

    Article 

    Google Scholar 

  • 28.

    Westman, K., Savolainen, R. & Julkunen, M. Replacement of the native crayfish Astacus astacus by the introduced species Pacifastacus leniusculus in a small, enclosed Finnish lake: A 30-year study. Ecography 25, 53–73 (2002).

    Article 

    Google Scholar 

  • 29.

    Ghia, D. et al. Il gambero autoctono italiano e il gambero della California coesistono in un tratto del torrente Valla (Italia nord-occidentale). Ital. J. Freshw. Ichthyol. 5, 120–131 (2018).

    Google Scholar 

  • 30.

    Ruokonen, T. J. et al. Introduced alien signal crayfish (Pacifastacus leniusculus) in Finland—Uncontrollable expansion despite numerous crayfisheries strategies. Knowl. Manag. Aquat. Ecosyst. 419, 27 (2018).

    Article 

    Google Scholar 

  • 31.

    Kouba, A., Buric, M. & Petrusek, A. Crayfish species in Europe. In Crayfish Biology and Culture (ed. Kozák, P. et al.) 79–163 (University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and protection of Waters, 2015).

  • 32.

    Ercoli, F., Ruokonen, T. J., Hämäläinen, H. & Jones, R. I. Does the introduced signal crayfish occupy an equivalent trophic niche to the lost native noble crayfish in boreal lakes?. Biol. Invasions 16, 2025–2036 (2014).

    Article 

    Google Scholar 

  • 33.

    Olsson, K., Stenroth, P., Nyström, P. & Graneli, W. Invasions and niche width: Does niche width of an introduced crayfish differ from a native crayfish?. Freshw. Biol. 54, 1731–1740 (2009).

    Article 

    Google Scholar 

  • 34.

    Chucholl, C. Understanding invasion success : Life-history traits and feeding habits of the alien crayfish Orconectes immunis (Decapoda, Astacida, Cambaridae). Knowl. Manag. Aquat. Ecosyst. 404, 04 (2012).

    Article 

    Google Scholar 

  • 35.

    Nakata, K. & Goshima, S. Competition for shelter of preferred sizes between the native crayfish species Cambaroides japonicus and the alien crayfish species Pacifastacus leniusculus in Japan in relation to prior residence, sex difference, and body size. J. Crustac Biol. 23, 897–907 (2003).

    Article 

    Google Scholar 

  • 36.

    Alcorlo, P., Geiger, W. & Otero, M. Feeding preferences and food selection of the red swamp crayfish, Procambarus clarkii, in habitat differing in food item diversity. Crustaceana 77, 435–453. https://doi.org/10.1163/1568540041643283 (2004).

    Article 

    Google Scholar 

  • 37.

    Bondar, C. & Richardson, J. S. Effects of ontogenetic stage and density on the ecological role of the signal crayfish (Pacifastacus leniusculus ) in a coastal Pacific stream. J. N. Am. Benthol. Soc. 28, 294–304 (2009).

    Article 

    Google Scholar 

  • 38.

    Usio, N., Kamiyama, R., Saji, A. & Takamura, N. Size-dependent impacts of invasive alien crayfish on a littoral marsh community. Biol. Conserv. 142, 1480–1490 (2009).

    Article 

    Google Scholar 

  • 39.

    Whitledge, G. W. & Rabeni, C. F. Energy sources and ecological role of crayfishes in an Ozark stream: Insights from stable isotopes and gut analysis. Can. J. Fish. Aquat. Sci. 54, 2555–2563 (1997).

    Article 

    Google Scholar 

  • 40.

    Momot, W. T. Redefining the role of crayfish in aquatic ecosystems. Rev. Fish. Sci. https://doi.org/10.1080/10641269509388566 (1995).

    Article 

    Google Scholar 

  • 41.

    Nyström, P., Brönmark, C. & Granéli, W. Patterns in benthic food webs: A role for omnivorous crayfish?. Freshw. Biol. 36, 631–646 (1996).

    Article 

    Google Scholar 

  • 42.

    Stites, A. J., Taylor, C. A. & Kessler, E. J. Trophic ecology of the North American crayfish genus Barbicambarus Hobbs, 1969 (Decapoda: Astacoidea: Cambaridae): Evidence for a unique relationship between body size and trophic position. J. Crustacean Biol. 37, 263–271 (2017).

    Article 

    Google Scholar 

  • 43.

    Correia, A.M. & Anastácio, P.M. Shifts in aquatic macroinvertebrate biodiversity associated with the presence and size of an alien crayfish. Ecol. Res. 23, 729–734 (2008).

  • 44.

    Johnson, M. F., Rice, S. P. & Reid, I. The activity of signal crayfish (Pacifastacus leniusculus) in relation to thermal and hydraulic dynamics of an alluvial stream, UK. Hydrobiologia 724, 41–54 (2014).

    Article 

    Google Scholar 

  • 45.

    Guan, R. Z. Abundance and production of the introduced signal crayfish in a British lowland river. Aquac. Int. 8, 59–76 (2000).

    Article 

    Google Scholar 

  • 46.

    Almeida, D. et al. Environmental biology of an invasive population of signal crayfish in the River Stort catchment (southeastern England). Limnologica 43, 177–184 (2013).

    Article 

    Google Scholar 

  • 47.

    Hein, C.L., Roth, B.M., Ives, A.R. & Vander Zanden, M.J. Fish predation and trapping for rusty crayfish (Orconectes rusticus) control: A whole-lake experiment. Can. J. Fish. Aquat. Sci. 63, 383–393 (2006).

  • 48.

    Houghton, R. J., Wood, C. & Lambin, X. Size-mediated, density-dependent cannibalism in the signal crayfish Pacifastacus leniusculus (Dana, 1852) (Decapoda, Astacidea), an invasive crayfish in Britain. Crustaceana 90, 417–435 (2017).

    Article 

    Google Scholar 

  • 49.

    Bondar, C. A. & Richardson, J. S. Stage-specific interactions between dominant consumers within a small stream ecosystem: Direct and indirect consequences. Freshw. Sci. 32, 183–192 (2013).

    Article 

    Google Scholar 

  • 50.

    Nyström, P. Ecology. In Biology of Freshwater Crayfish (ed. Holdich, D.M.) 192–235 (Blackwel Science, 2002).

  • 51.

    Gherardi, F., Acquistapace, P. & Santini G. Food selection in freshwater omnivores: A case study of crayfish Austropotamobius pallipes. Arch. Hydrobiol.159, 357–376 (2004).

  • 52.

    Moorhouse, T. P. et al. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species. Ecol. Evol. https://doi.org/10.1002/ece3.903 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Ishikawa, N. F., Doi, H. & Finlay, J. C. Global dataset for carbon and nitrogen stable isotope ratios of lotic periphyton. Ecol. Res. 33, 1089 (2018).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Westman, K., Savolainen, R. & Pursiainen, M. Development of the introduced North American signal crayfish, Pacifastacus leniusculus (Dana), population in a small Finnish forest lake in 1970–1997. Boreal Environ. Res. 4, 387–407 (1999).

    Google Scholar 

  • 55.

    Stewart, K. W. & Stark, B. P. Nymphs of North American Stonefly Genera (Plecoptera) (The Caddis Press, 2002).

    Google Scholar 

  • 56.

    Bo, T., Cammarata, M., Candiotto, A. & Fenoglio, S. Trophic preferences of three allochthonous fishes in Bormida River (Alessandria, NW Italy). Hidrobiologica 22, 195–200 (2012).

    Google Scholar 

  • 57.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER-stable isotope Bayesian ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    R Development Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org (R Foundation for Statistical Computing, 2016).

  • 59.

    Jackson, A.L. Ellipse Overlap. https://cran.rproject.org/web/packages/SIBER/vignettes/Ellipse-Overlap.html (2020).

  • 60.

    Stock, B. C. & Semmens, B. X. MixSIAR GUI user manual version 31, 1–42. https://doi.org/10.5281/zenodo.47719 (2016).

    Article 

    Google Scholar 

  • 61.

    Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096. https://doi.org/10.7717/peerj.5096 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Stock, B. C. & Semmens, B. X. Unifying error structures in commonly used biotracer mixing models. Ecology 97, 2562–2569 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Carolan, J. V., Mazumder, D., Dimovski, C., Diocares, R. & Twining, J. Biokinetics and discrimination factors for δ13C and δ15N in the omnivorous freshwater crustacean, Cheraxdestructor. Mar. Freshw. Res. 63, 878–886. https://doi.org/10.1071/MF11240 (2012).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Jussila, J. et al. It takes time to see the menu from the body: An experiment on stable isotope composition in freshwater crayfishes. Knowl. Manag. Aquat. Ecosyst. 416, 25. https://doi.org/10.1051/kmae/2015021 (2015).

    Article 

    Google Scholar 

  • 65.

    Glon, M.G., Larson, E.R. & Pangle, K.L. Comparison of 13C and 15N discrimination factors and turnover rates between congeneric crayfish Orconectes rusticus and O. virilis (Decapoda, Cambaridae). Hydrobiologia 768, 51–61. https://doi.org/10.1007/s10750-015-2527-3 (2016).

  • 66.

    Vander Zanden, M.J. & Rasmussen, J.B. Variation in delta N-15 and delta C-13 trophic fractionation: Implication for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066 (2001).

  • 67.

    McCutchan, J. H. Jr., Lewis, W. M., Kendal, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen and suphur. Oikos 102, 378–390 (2003).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The serotonin transporter gene and female personality variation in a free-living passerine

    Keeping humanity central to solving climate change