Holdich, D. M. M., Reynolds, J. D. D., Souty-Grosset, C. & Sibley, P. J. J. A review of the ever increasing threat to European crayfish from non- indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst. 11, 394–395 (2009).
Kouba, A., Petrusek, A. & Kozák, P. Continental-wide distribution of crayfish species in Europe: Update and maps. Knowl. Manag. Aquat. Ecosyst. 05, 413 (2014).
Edgerton, B. F. et al. Understanding the causes of disease in European freshwater crayfish. Conserv. Biol. 18, 1466–1474 (2004).
Google Scholar
Jussila, J., Vrezec, A., Makkonen, J., Kortet, R. & Kokko, H. Invasive crayfish and their invasive diseases in Europe with the focus on the virulence evolution of the crayfish plague invasive crayfish and their invasive diseases. In Biological Invasions in Changing Ecosystems (ed. Canning-Clode, J.) 183–204 (De Gruyter Open Ltd, 2015).
Nyström, P. Ecological impact of introduced and native crayfish on freshwater communities: European perspectives. In Crayfish in Europe as Alien Species – How to Make the Best of Bad Situation? (eds Gherardi, F. & Holdich, D. M.) 63–85 (Rotterdam, 1999).
McCarthy, J.M., Hein, C.L., Olden, J.D. & Vander Zanden, M.J. Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. Freshw. Biol. 51, 224–235 (2006).
Twardochleb, L. A., Julian, D. & Larson, E. R. A global meta-analysis of the ecological impacts of nonnative crayfish. Fresh. Sci. 4, 1367–1382 (2013).
Google Scholar
Galib, S. M., Findlay, J. S. & Lucas, M. C. Strong impacts of signal crayfish invasion on upland stream fish and invertebrate communities. Freshw. Biol. 66, 223–240 (2021).
Google Scholar
Rosenthal, S.K., Stevens, S.S. & Lodge, D.M. Whole-lake effects of invasive crayfish (Orconectes spp.) and the potential for restoration. Can. J. Fish. Aquat. Sci. 63, 1276–1285 (2006).
Parkyn, S. M., Collier, K. J. & Hicks, B. J. New Zealand stream crayfish: functional omnivores but trophic predators?. Freshw. Biol. 46, 641–652 (2001).
Google Scholar
Stenroth, P. et al. Stable isotopes as an indicator of diet in omnivorous crayfish (Pacifastacus leniusculus): The influence of tissue, sample treatment, and season. Can. J. Fish. Aquat. Sci. 63, 821–831 (2006).
Google Scholar
Correia, A. M. Food choice by the introduced crayfish Procambarus clarkii food choice by the introduced crayfish Procambarus clarkii. Ann. Zool. Fenn. 40, 517–528 (2014).
Abrahamsson, S. A. Dynamics of an isolated population of the crayfish, Astacus astacus Linneo. Oikos 17, 96–107 (1966).
Google Scholar
France, R. Ontogenetic shift in crayfish δ13C as a measure of land-water ecotonal coupling. Oecologia 107, 239–242 (1996).
Google Scholar
Guan, R. Z. & Wiles, P. R. Feeding ecology of the signal crayfish Pacifastacus leniusculus in a British lowland river. Aquaculture 169, 177–193 (1998).
Google Scholar
Hanson, J. M., Chambers, P. A. & Prepas, E. E. Selective foraging by the crayfish Orconectes virilis and its impact on macroinvertebrates. Freshw. Biol. 24, 69–80 (1990).
Google Scholar
Chambers, P. A., Hanson, J. M., Burke, J. M. & Prepas, E. E. The impact of the crayfish Orconectes virilis on aquatic macrophytes. Freshw. Biol. 24, 81–91 (1990).
Google Scholar
Usio, N. & Townsend, C. R. Functional significance of crayfish in stream food webs : Roles of omnivory, substrate heterogeneity and sex. Oikos 98, 512–522 (2002).
Google Scholar
Bondar, C. A., Bottriell, K., Zeron, K. & Richardson, J. S. Does trophic position of the omnivorous signal crayfish (Pacifastacus leniusculus) in a stream food web vary with life history stage or density?. Can. J. Fish. Aquat. Sci. 62, 2632–2639 (2005).
Google Scholar
Dekar, M. P., Magoulick, D. D. & Huxel, G. R. Shifts in the trophic base of intermittent stream food webs. Hydrobiologia 635, 263–277 (2009).
Google Scholar
Evans-White, M. A., Dodds, W. K. & Whiles, M. R. Ecosystem significance of crayfishes and stonerollers in a prairie stream: Functional differences between co-occurring omnivores. J. N. Am. Benthol. Soc. 22, 423–441 (2003).
Google Scholar
Machino, Y. Présence de l’écrevisse de Californie (Pacifastacus leniusculus) en Italie. L’Astaciculteur France 52, 2–5 (1997).
Capurro, M. et al. The signal crayfish, Pacifastacus leniusculus (Dana, 1852) [Crustacea: Decapoda: Astacidae], in the Brugneto Lake (Liguria, NW Italy). The beginning of the invasion of the River Po watershed? Aquat. Invas. 2, 17–24 (2007).
Candiotto, A., Delmastro, G. B., Dotti, L. & Sindaco, R. Pacifastacus leniusculus (Dana, 1852), un nuovo gambero esotico naturalizzato in Piemonte (Crustacea, Decapoda, Astacidae). Riv. Piemontese Storia Nat. 31, 73–82 (2010).
Ghia, D. et al. Distribuzione e naturalizzazione del gambero invasivo Pacifastacus leniusculus nel torrente Valla (Italia nord-occidentale). Ital. J. Freshw. Ichthyol. 4, 101–108 (2017).
Füreder, L. et al. Austropotamobius pallipes. In The IUCN Red List of Threatened Species 2010: e.T2430A9438817 (2010).
Almeida, D., Ellis, A., England, J. & Copp, G. H. Time-series analysis of native and non-native crayfish dynamics in the Thames River Basin (south-eastern England). Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 192–202 (2014).
Google Scholar
Westman, K., Savolainen, R. & Julkunen, M. Replacement of the native crayfish Astacus astacus by the introduced species Pacifastacus leniusculus in a small, enclosed Finnish lake: A 30-year study. Ecography 25, 53–73 (2002).
Google Scholar
Ghia, D. et al. Il gambero autoctono italiano e il gambero della California coesistono in un tratto del torrente Valla (Italia nord-occidentale). Ital. J. Freshw. Ichthyol. 5, 120–131 (2018).
Ruokonen, T. J. et al. Introduced alien signal crayfish (Pacifastacus leniusculus) in Finland—Uncontrollable expansion despite numerous crayfisheries strategies. Knowl. Manag. Aquat. Ecosyst. 419, 27 (2018).
Google Scholar
Kouba, A., Buric, M. & Petrusek, A. Crayfish species in Europe. In Crayfish Biology and Culture (ed. Kozák, P. et al.) 79–163 (University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and protection of Waters, 2015).
Ercoli, F., Ruokonen, T. J., Hämäläinen, H. & Jones, R. I. Does the introduced signal crayfish occupy an equivalent trophic niche to the lost native noble crayfish in boreal lakes?. Biol. Invasions 16, 2025–2036 (2014).
Google Scholar
Olsson, K., Stenroth, P., Nyström, P. & Graneli, W. Invasions and niche width: Does niche width of an introduced crayfish differ from a native crayfish?. Freshw. Biol. 54, 1731–1740 (2009).
Google Scholar
Chucholl, C. Understanding invasion success : Life-history traits and feeding habits of the alien crayfish Orconectes immunis (Decapoda, Astacida, Cambaridae). Knowl. Manag. Aquat. Ecosyst. 404, 04 (2012).
Google Scholar
Nakata, K. & Goshima, S. Competition for shelter of preferred sizes between the native crayfish species Cambaroides japonicus and the alien crayfish species Pacifastacus leniusculus in Japan in relation to prior residence, sex difference, and body size. J. Crustac Biol. 23, 897–907 (2003).
Google Scholar
Alcorlo, P., Geiger, W. & Otero, M. Feeding preferences and food selection of the red swamp crayfish, Procambarus clarkii, in habitat differing in food item diversity. Crustaceana 77, 435–453. https://doi.org/10.1163/1568540041643283 (2004).
Google Scholar
Bondar, C. & Richardson, J. S. Effects of ontogenetic stage and density on the ecological role of the signal crayfish (Pacifastacus leniusculus ) in a coastal Pacific stream. J. N. Am. Benthol. Soc. 28, 294–304 (2009).
Google Scholar
Usio, N., Kamiyama, R., Saji, A. & Takamura, N. Size-dependent impacts of invasive alien crayfish on a littoral marsh community. Biol. Conserv. 142, 1480–1490 (2009).
Google Scholar
Whitledge, G. W. & Rabeni, C. F. Energy sources and ecological role of crayfishes in an Ozark stream: Insights from stable isotopes and gut analysis. Can. J. Fish. Aquat. Sci. 54, 2555–2563 (1997).
Google Scholar
Momot, W. T. Redefining the role of crayfish in aquatic ecosystems. Rev. Fish. Sci. https://doi.org/10.1080/10641269509388566 (1995).
Google Scholar
Nyström, P., Brönmark, C. & Granéli, W. Patterns in benthic food webs: A role for omnivorous crayfish?. Freshw. Biol. 36, 631–646 (1996).
Google Scholar
Stites, A. J., Taylor, C. A. & Kessler, E. J. Trophic ecology of the North American crayfish genus Barbicambarus Hobbs, 1969 (Decapoda: Astacoidea: Cambaridae): Evidence for a unique relationship between body size and trophic position. J. Crustacean Biol. 37, 263–271 (2017).
Google Scholar
Correia, A.M. & Anastácio, P.M. Shifts in aquatic macroinvertebrate biodiversity associated with the presence and size of an alien crayfish. Ecol. Res. 23, 729–734 (2008).
Johnson, M. F., Rice, S. P. & Reid, I. The activity of signal crayfish (Pacifastacus leniusculus) in relation to thermal and hydraulic dynamics of an alluvial stream, UK. Hydrobiologia 724, 41–54 (2014).
Google Scholar
Guan, R. Z. Abundance and production of the introduced signal crayfish in a British lowland river. Aquac. Int. 8, 59–76 (2000).
Google Scholar
Almeida, D. et al. Environmental biology of an invasive population of signal crayfish in the River Stort catchment (southeastern England). Limnologica 43, 177–184 (2013).
Google Scholar
Hein, C.L., Roth, B.M., Ives, A.R. & Vander Zanden, M.J. Fish predation and trapping for rusty crayfish (Orconectes rusticus) control: A whole-lake experiment. Can. J. Fish. Aquat. Sci. 63, 383–393 (2006).
Houghton, R. J., Wood, C. & Lambin, X. Size-mediated, density-dependent cannibalism in the signal crayfish Pacifastacus leniusculus (Dana, 1852) (Decapoda, Astacidea), an invasive crayfish in Britain. Crustaceana 90, 417–435 (2017).
Google Scholar
Bondar, C. A. & Richardson, J. S. Stage-specific interactions between dominant consumers within a small stream ecosystem: Direct and indirect consequences. Freshw. Sci. 32, 183–192 (2013).
Google Scholar
Nyström, P. Ecology. In Biology of Freshwater Crayfish (ed. Holdich, D.M.) 192–235 (Blackwel Science, 2002).
Gherardi, F., Acquistapace, P. & Santini G. Food selection in freshwater omnivores: A case study of crayfish Austropotamobius pallipes. Arch. Hydrobiol.159, 357–376 (2004).
Moorhouse, T. P. et al. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species. Ecol. Evol. https://doi.org/10.1002/ece3.903 (2014).
Google Scholar
Ishikawa, N. F., Doi, H. & Finlay, J. C. Global dataset for carbon and nitrogen stable isotope ratios of lotic periphyton. Ecol. Res. 33, 1089 (2018).
Google Scholar
Westman, K., Savolainen, R. & Pursiainen, M. Development of the introduced North American signal crayfish, Pacifastacus leniusculus (Dana), population in a small Finnish forest lake in 1970–1997. Boreal Environ. Res. 4, 387–407 (1999).
Stewart, K. W. & Stark, B. P. Nymphs of North American Stonefly Genera (Plecoptera) (The Caddis Press, 2002).
Bo, T., Cammarata, M., Candiotto, A. & Fenoglio, S. Trophic preferences of three allochthonous fishes in Bormida River (Alessandria, NW Italy). Hidrobiologica 22, 195–200 (2012).
Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER-stable isotope Bayesian ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).
Google Scholar
R Development Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org (R Foundation for Statistical Computing, 2016).
Jackson, A.L. Ellipse Overlap. https://cran.rproject.org/web/packages/SIBER/vignettes/Ellipse-Overlap.html (2020).
Stock, B. C. & Semmens, B. X. MixSIAR GUI user manual version 31, 1–42. https://doi.org/10.5281/zenodo.47719 (2016).
Google Scholar
Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096. https://doi.org/10.7717/peerj.5096 (2018).
Google Scholar
Stock, B. C. & Semmens, B. X. Unifying error structures in commonly used biotracer mixing models. Ecology 97, 2562–2569 (2016).
Google Scholar
Carolan, J. V., Mazumder, D., Dimovski, C., Diocares, R. & Twining, J. Biokinetics and discrimination factors for δ13C and δ15N in the omnivorous freshwater crustacean, Cheraxdestructor. Mar. Freshw. Res. 63, 878–886. https://doi.org/10.1071/MF11240 (2012).
Google Scholar
Jussila, J. et al. It takes time to see the menu from the body: An experiment on stable isotope composition in freshwater crayfishes. Knowl. Manag. Aquat. Ecosyst. 416, 25. https://doi.org/10.1051/kmae/2015021 (2015).
Google Scholar
Glon, M.G., Larson, E.R. & Pangle, K.L. Comparison of 13C and 15N discrimination factors and turnover rates between congeneric crayfish Orconectes rusticus and O. virilis (Decapoda, Cambaridae). Hydrobiologia 768, 51–61. https://doi.org/10.1007/s10750-015-2527-3 (2016).
Vander Zanden, M.J. & Rasmussen, J.B. Variation in delta N-15 and delta C-13 trophic fractionation: Implication for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066 (2001).
McCutchan, J. H. Jr., Lewis, W. M., Kendal, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen and suphur. Oikos 102, 378–390 (2003).
Google Scholar
Source: Ecology - nature.com