in

Barrier properties of fungal fruit body skins, pileipelles, contribute to protection against water loss

  • 1.

    Nobel, P. S. Physicochemical and Environmental Plant Physiology (Academic Press, 2005).

    Google Scholar 

  • 2.

    Hsiao, T. C. Plant responses to water stress. Annu. Rev. Plant Physiol. 24, 519–570 (1973).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Schönherr, J. Resistance of plant surfaces to water loss : transport properties of cutin, suberin and associated lipids. In Encyclopedia Plant Physiology, NS Vol. 12B (eds Lange, O. L. et al.) 154–179 (Springer, 1982).

    Google Scholar 

  • 4.

    Lendzian, K. J. Gas permeability of plant cuticles: oxygen permeability. Planta 155, 310–315 (1982).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Langenfeld-Heyser, R. Physiological functions of lenticels. In Trees—Contributions to Modern Tree Physiology (eds Rennenberg, H. et al.) 43–56 (Backhuys, 1997).

    Google Scholar 

  • 6.

    Riederer, M. & Schreiber, L. Protecting against water loss: analysis of the barrier properties of plant cuticles. J. Exp. Bot. 52, 2023–2032 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Kerstiens, G. Parameterization, comparison, and validation of models quantifying relative change of cuticular permeability with physicochemical properties of diffusants. J. Exp. Bot. 57, 2525–2533 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Schönherr, J. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J. Exp. Bot. 57, 2471–2491 (2006).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 9.

    Groh, B., Hübner, C. & Lendzian, K. J. Water and oxygen permeance of phellems isolated from trees: the role of waxes and lenticels. Planta 215, 794–801 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Lendzian, K. J. Survival strategies of plants during secondary growth: barrier properties of phellems and lenticels towards water, oxygen, and carbon dioxide. J. Exp. Bot. 57, 2535–2546 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Renault, H. et al. (2017) A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nat. Commun. 8, 14713 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Haas, K. Phytochemische und rasterelektronenmikroskopische Untersuchungen zum Oberflächenwachs von Laubmoosen (Bryatae) (Grauer, 1999).

    Google Scholar 

  • 13.

    Clémençon, H., Emmett, V. & Emmett, E. E. Cytology and Plectology of the Hymenomycetes (J Cramer, 2012).

    Google Scholar 

  • 14.

    Moore, D., Gange, A. C., Gange, E. G. & Boddy, L. Fruit bodies: their production and development in relation to environment. In Ecology of Saprotrophic Basidiomycetes (eds Boddy, L. et al.) 79–103 (Elsevier Academic Press, 2008).

    Google Scholar 

  • 15.

    Halbwachs, H., Simmel, J. & Bässler, C. Tales and mysteries of fungal fruiting: how morphological and physiological traits affect a pileate lifestyle. Fungal Biol. Rev. 30, 36–61 (2016).

    Article 

    Google Scholar 

  • 16.

    Sakamoto, Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biol. Rev. 32, 236–248 (2018).

    Article 

    Google Scholar 

  • 17.

    Straatsma, G., Ayer, F. & Egli, S. Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycol. Res. 105(5), 515–523 (2001).

    Article 

    Google Scholar 

  • 18.

    Kües, U. & Liu, Y. Fruiting body production in basidiomycetes. Appl. Microbiol. Biotechnol. 54, 141–152 (2000).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Beluhan, S. & Ranogajec, A. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chem. 124, 1076–1082 (2011).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Beecher, T. M., Magan, N. & Burton, K. S. Water potentials and soluble carbohydrate concentrations in tissues of freshly harvested and stored mushrooms (Agaricusbisporus). Postharvest Biol. Technol. 22, 121–131 (2001).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Bonnier G, Mangin L (1884) Recherches sur la respiration et la transpiration des champignons. Ann. Sc. Natur., sér. VI, t. XVII:210–305

  • 22.

    Moser, M. Transpirationsschutz bei höheren Pilzen. Schweizerische Zeitschrift für Pilzkunde 42(4), 50–54 (1964).

    Google Scholar 

  • 23.

    Pieschel, E. Über die Transpiration und die Wasserversorgung der Hymenomyceten. Bot. Archiv. VIII, 64–104 (1924).

    Google Scholar 

  • 24.

    Seybold, A. Weitere Beiträge zur Transpirationsanalyse. IV. Über die Transpiration der Hutpilze. Planta 16, 518–525 (1932).

    Article 

    Google Scholar 

  • 25.

    Becker, M., Kerstiens, G. & Schönherr, J. Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees 1, 54–60 (1986).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Schreiber, L. & Schönherr, J. Water and Solute Permeability of Plant Cuticles. Measurement and Data Analysis (Springer, 2009).

    Google Scholar 

  • 27.

    Schönherr, J. & Lendzian, K. J. A simple and inexpensive method of measuring water permeability of isolated plant cuticular membranes. Z Pflanzenphysiol 102, 321–327 (1981).

    Article 

    Google Scholar 

  • 28.

    Weast, R. C. CRC Handbook of Chemistry and Physics: Humidity Constant (CRC Press, 1983).

    Google Scholar 

  • 29.

    Riederer, M. & Schneider, G. Comparative study of the composition of waxes extracted from isolated leaf cuticules and from whole leaves of Citrus: evidence for selective extraction. Physiol. Plant 77, 373–384 (1989).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Lendzian, K. J. & Kerstiens, G. Sorption and transport of gases and vapors in plant cuticles. Rev. Environ. Cont. Tox. 121, 65–128 (1991).

    CAS 

    Google Scholar 

  • 31.

    Kerstiens, G., Federholzner, R. & Lendzian, K. J. Dry deposition and cuticular uptake of pollutant gases. Agric. Ecosyst. Environ. 42, 239–253 (1992).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Metzler, H. & Krause, B. Angewandte Statistik (Dt Verlag Wiss, 1983).

    Google Scholar 

  • 33.

    Baur, P. Lognormal distribution of water permeability and organic solute mobility in plant cuticles. Plant Cell Environ. 20, 167–177 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Stamets, P. Growing Gourmet and Medicinal Mushrooms (Ten Speed Press, 1993).

    Google Scholar 

  • 35.

    Moser, M. Fungal growth and fructification under stress conditions. Ukrainian Botanical J. 50, 5–12 (1993).

    Google Scholar 

  • 36.

    Pinna, S., Gevry, M. F., Côté, M. & Sirois, L. Factors influencing fructification phenology of edible mushrooms in a boreal mixed forest of Eastern Canada. For. Ecol. Manag. 260(3), 294–301 (2010).

    Article 

    Google Scholar 

  • 37.

    Buller, A. H. R. Researches on Fungi. II. Further Investigations Upon the Production and Liberation of Spores in Hymenomyctes (Hafner Publishing Co, 1922).

    Google Scholar 

  • 38.

    Kües, U. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol. Mol. Biol. Rev. 64, 316–353 (2000).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Money, N. More g’s than the space shuttle: ballistospore discharge. Mycologia 90, 547–558 (1998).

    Article 

    Google Scholar 

  • 40.

    Husher, J. et al. Evaporative cooling of mushrooms. Mycologia 91, 351–352 (1999).

    Article 

    Google Scholar 

  • 41.

    Dressaire, E., Yamada, L., Song, B. & Roper, M. Mushrooms use convectively created airflows to disperse their spores. Proc. Natl. Acad. Sci. U. S. A. 113, 2833–2838 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    De Groot, P. W., Schaap, P. J., Sonnenberg, A. S., Visser, J. & Van Griensven, L. J. The Agaricus bisporus hypAgene encodes a hydrophobin and specifically accumulates in peel tissue of mushroom caps during fruit body development. J. Mol. Biol. 257, 1008–1018 (1996).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Wösten, H. A. B. & Wessels, J. G. H. The emergence of fruiting bodies in basidiomycetes. In Growth, Differentiation and Sexuality. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research), Vol. 1 (eds. Kües, U. & Fischer, R.) (Springer, 2006).

  • 44.

    Itoh, Y. H., Sugai, A., Uda, I. & Itoh, T. The evolution of lipids. Adv. Space Res. 28, 719–724 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Segré, D., Ben-Eli, D., Deamer, D. W. & Lancet, D. The lipid world. Origins Life Evol. Biosphere 31, 119–145 (2001).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Samson, R. A., Stalpers, J. A. & Verkerke, W. A simplified technique to prepare fungal specimens for scanning electronmicroscopy. Cytobios 24, 7–11 (1979).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    The serotonin transporter gene and female personality variation in a free-living passerine

    Keeping humanity central to solving climate change