in

Revisiting traditional SSR based methodologies available for elephant genetic studies

  • 1.

    Whyte, I. Studying elephant movements, in studying elephants, in African Wildl. Found. Tech. Ser. 7. African Wildl. Found. (ed Kangwana, K.) 75–89 (1996).

  • 2.

    Rasmussen, L. E. L. & Krishnamurthy, V. How chemical signals integrate Asian elephant society: The known and the unknown. Zoo Biol. 19, 405–423 (2000).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Nair, S., Balakrishnan, R., Seelamantula, C. S. & Sukumar, R. Vocalizations of wild Asian elephants (Elephas maximus ): structural classification and social context. J. Acoust. Soc. Am. 126, 2768–2778 (2009).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Stoeger, A. S. & Manger, P. Vocal learning in elephants: neural bases and adaptive context. Curr. Opin. Neurobiol. 28, 101–107 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Moss, C. J. & Poole, J. H. Relationships and social structure in African elephants. Primate Soc. Relationsh.: An Integr. Approach 315-325 (1983).

    Google Scholar 

  • 6.

    Foerder, P., Galloway, M., Barthel, T., Moore, D. E. & Reiss, D. Insightful problem solving in an asian elephant. PLoS ONE 6, e23251 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Lee, P. C. Allomothering among African elephant. Animal Behaviour 35, 278-291 (1987).

  • 8.

    Byrne, R. W., Bates, L. & Moss, C. J. Comparative cognition & behavior reviews. Elephant Cogn. 4, 65–79 (2009).

    Google Scholar 

  • 9.

    Bates, L. A., Poole, J. H. & Byrne, R. W. Elephant cognition. Curr. Biol. 18, 544–546 (2008).

    Article 
    CAS 

    Google Scholar 

  • 10.

    Vance, E. A., Archie, E. A. & Moss, C. J. Social networks in African elephants. Comput. Math. Organ. Theory 15, 273–293 (2009).

    Article 

    Google Scholar 

  • 11.

    de Silva, S. & Wittemyer, G. A comparison of social organization in Asian elephants and African savannah elephants. Int. J. Primatol. 33, 1125–1141 (2012).

    Article 

    Google Scholar 

  • 12.

    Shoshani, J. Understanding proboscidean evolution: a formidable task. Trends Ecol. Evol. 13, 480–487 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Rohland, N. et al. Proboscidean mitogenomics: chronology and mode of elephant evolution using mastodon as outgroup. PLoS Biol. 5, 1663–1671 (2007).

    CAS 
    Article 

    Google Scholar 

  • 14.

    de Flamingh, A. Genetic structure of the savannah elephant population (Loxodonta africana (Blumenbach 1797)) in the Kavango-Zambezi Transfrontier Conservation Area. ProQuest Diss. Theses 102 (2013).

  • 15.

    Grubb, P., Groves, C. P., Dudley, J. P. & Shoshani, J. Living African elephants belong to two species: Loxodonta africana (Blumenbach, 1797) and Loxodonta cyclotis (Matschie, 1900). Elephant 2, 1–4 (2000).

    Article 

    Google Scholar 

  • 16.

    Roca, A. L., Georgiadis, N., Pecon-Slattery, J. & O’Brien, S. J. Genetic evidence for two species of elephant in Africa. Science 293, 1473–1477 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Roca, A. L. et al. Elephant natural history: a genomic perspective. Annu. Rev. Anim. Biosci. 3, 139–167 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Wasser, S. K. et al. Assigning African elephant DNA to geographic region of origin: applications to the ivory trade. Proc. Natl. Acad. Sci. U. S. A. 101, 14847–14852 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Ishida, Y. et al. Distinguishing forest and savanna African elephants using short nuclear DNA sequences. J. Hered. 102, 610–616 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Comstock, K. E. et al. Patterns of molecular genetic variation among African elephant populations. Mol. Ecol. 11, 2489–2498 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Palkopoulou, E. et al. A comprehensive genomic history of extinct and living elephants. Proc. Natl. Acad. Sci. U. S. A. 115, E2566–E2574 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Shoshani, J. & Eisenberg, J. F. Elephas maximus. Mamm. Species 182, 1–8 (1982).

    Article 

    Google Scholar 

  • 23.

    Sukumar, R. The Living Elephants (Oxford University Press, 2003).

    Google Scholar 

  • 24.

    Sukumar, R. A brief review of the status, distribution and biology of wild Asian elephants Elephas maximus. Int. Zoo Yearb. 40, 1–8 (2006).

    Article 

    Google Scholar 

  • 25.

    Olivier, R. Distribution and status of the Asian elephant. Oryx 14(4), 379–424. https://doi.org/10.1017/S003060530001601X (1978).

    Article 

    Google Scholar 

  • 26.

    Santiapillai, C. The Asian elephant conservation: a global strategy. Gajah 18, 21–39 (1997).

    Google Scholar 

  • 27.

    Sukumar, R. Ecology of the Asian elephant in Southern India. i. movement and habitat utilization patterns. J. Trop. Ecol. 5, 1–18 (1989).

    Article 

    Google Scholar 

  • 28.

    Vidya, T. N. C., Fernando, P., Melnick, D. J. & Sukumar, R. Population genetic structure and conservation of Asian elephants (Elephas maximus) across India. Anim. Conserv. 8, 377–388 (2005).

    Article 

    Google Scholar 

  • 29.

    Fleischer, R. C., Perry, E. A., Muralidharan, K., Stevens, E. E. & Wemmer, C. M. Phylogeography of the Asian elephant (Elephas maximus) based on mitochondrial DNA. Evolution (N. Y.) 55, 1882–1892 (2001).

    CAS 

    Google Scholar 

  • 30.

    Fernando, P., Pfrender, M. E., Encalada, S. E. & Lande, R. Mitochondrial DNA variation, phylogeography and population structure of the Asian elephant. Heredity (Edinb). 84, 362–372 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Fernando, P. Elephants in Sri Lanka: past, present, and future. Loris 22, 38–44 (2000).

    Google Scholar 

  • 32.

    Hendavitharana, W., Dissanayake, S. & de Silva, M. The survey of elephants in Sri Lanka. Gajah 12, 1–30 (1994).

    Google Scholar 

  • 33.

    Eggert, L. S., Rasner, C. A. & Woodruff, D. S. The evolution and phylogeography of the African elephant inferred from mitochondrial DNA sequence and nuclear microsatellite markers. Hungarian Q. 49, 1993–2006 (2008).

    Google Scholar 

  • 34.

    Ishida, Y., Georgiadis, N. J., Hondo, T. & Roca, A. L. Triangulating the provenance of African elephants using mitochondrial DNA. Evol. Appl. 6, 253–265 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Liu, C. Z., Wang, L., Xia, X. J. & Jiang, J. Q. Characterization of the complete mitochondrial genome of cape elephant shrew, Elephantulus edwardii. Mitochondrial DNA Part B Resour. 3, 738–739 (2018).

    Article 

    Google Scholar 

  • 36.

    Fernando, P. et al. DNA analysis indicates that Asian elephants are native to Borneo and are therefore a high priority for conservation. PLoS Biol. 1, 110–115 (2003).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Ahlering, M. A. et al. Genetic diversity, social structure, and conservation value of the elephants of the Nakai Plateau, Lao PDR, based on non-invasive sampling. Conserv. Genet. 12, 413–422 (2011).

    Article 

    Google Scholar 

  • 38.

    Goossens, B. et al. Habitat fragmentation and genetic diversity in natural populations of the Bornean elephant: implications for conservation. BIOC 196, 80–92 (2016).

    Google Scholar 

  • 39.

    Shoshani, J., Golenberg, E. M. & Yang, H. Elephantidae phylogeny: Morphological versus molecular results. Acta Theriol. (Warsz) 43, 89–122 (1998).

    Article 

    Google Scholar 

  • 40.

    Vidya, T. N. C. & Sukumar, R. Amplification success and feasibility of using microsatellite loci amplified from dung to population genetic studies of the Asian elephant (Elephas maximus). Curr. Sci. 88, 489–492 (2005).

    CAS 

    Google Scholar 

  • 41.

    Vidya, T. N. C., Varma, S., Dang, N. X., Van Thanh, T. & Sukumar, R. Minimum population size, genetic diversity, and social structure of the Asian elephant in Cat Tien National Park and its adjoining areas, Vietnam, based on molecular genetic analyses. Conserv. Genet. 8, 1471–1478 (2007).

    Article 

    Google Scholar 

  • 42.

    Suwattana, D., Jirasupphachok, J., Kanchanapangka, S. & Koykul, W. Tetranucleotide microsatellite markers for molecular testing in Thai domestic elephants (Elephas maximus indicus). Thai J. Vet. Med. 40, 405–409 (2010).

    Google Scholar 

  • 43.

    Eggert, L. S. et al. Using genetic profiles of African forest elephants to infer population structure, movements, and habitat use in a conservation and development landscape in Gabon. Conserv. Biol. 28, 107–118 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Kinuthia, J. et al. The selection of a standard STR panel for DNA profiling of the African elephant (Loxodonta africana) in Kenya. Conserv. Genet. Resour. 7, 305–307 (2015).

    Article 

    Google Scholar 

  • 45.

    Hedges, S. Monitoring elephant populations and assessing threats. Universities Press (India) Pvt. Ltd., Hyderabad, India 259–292 (2012).

  • 46.

    Eggert, L. S., Ramakrishnan, U., Mundy, N. I. & Woodruff, D. S. Polymorphic microsatellite DNA markers in the African elephant (Loxondonta africana) and their use in the Asian elephant (Elephas maximus). Mol. Ecol. 9, 2222–2224 (2000).

    Article 

    Google Scholar 

  • 47.

    Nyakaana, S., Arctander, P. & Siegismund, H. R. Population structure of the African savannah elephant inferred from mitochondrial control region sequences and nuclear microsatellite loci. Heredity (Edinb). 89, 90–98 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Kongrit, C. et al. Isolation and characterization of dinucleotide microsatellite loci in the Asian elephant (Elephas maximus). Mol. Ecol. Resour. 8, 175–177 (2007).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Fernando, P., Vidya, T. N. C. & Melnick, D. J. Isolation and characterization of tri- and tetranucleotide microsatellite loci in the Asian elephant, Elephas maximus. Mol. Ecol. Resour. 8, 232–233 (2001).

    Article 

    Google Scholar 

  • 50.

    Archie, E. A., Moss, C. J. & Alberts, S. C. Characterization of tetranucleotide microsatellite loci in the African Savannah Elephant (Loxodonta africana africana). Mol. Ecol. Notes 3, 244–246 (2003).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Lieckfeldt, D., Schmidt, A. & Pitra, C. Isolation and characterization of microsatellite loci in the great bustard, Otis tarda. Mol. Ecol. Notes 1, 133–134 (2001).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Nyakaana, S., Okello, J. B. A., Muwanika, V. & Siegismund, H. R. Six new polymorphic microsatellite loci isolated and characterized from the African savannah elephant genome. Mol. Ecol. Notes 5, 223–225 (2005).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Okello, J. B. A. et al. Population genetic structure of savannah elephants in Kenya: conservation and management implications. J. Hered. 99, 443–452 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Nyakaana, S. & Arctander, P. Isolation and characterization of microsatellite loci in the African elephant, Loxodonta africana. Mol. Ecol. 10, 1436–1437 (1998).

    Google Scholar 

  • 55.

    Comstock, K. E., Wasser, S. K. & Ostrander, E. A. Polymorphic microsatellite DNA loci identified in the African elephant (Loxodonta africana). Mol. Ecol. 9, 1004–1006 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Hartl, G. B., Hartl, K. F., Hemmer, W. & Nadlinger, K. Electrophoretic and chromosomal variation in captive Asian elephants (Elephas maximus). Zoo Biol. 14, 87–95 (1995).

    Article 

    Google Scholar 

  • 57.

    Bourgeois, S. et al. Single-nucleotide polymorphism discovery and panel characterization in the African forest elephant. Ecol. Evol. 8, 2207–2217 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Sharma, R. et al. Two different high throughput sequencing approaches identify thousands of De Novo genomic markers for the genetically depleted Bornean elephant. PLoS ONE 7, e49533 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Reddy, P. C. et al. Comparative sequence analyses of genome and transcriptome reveal novel transcripts and variants in the Asian elephant Elephas maximus. J. Biosci. 40, 891–907 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Mondol, S. et al. New evidence for hybrid zones of forest and savanna elephants in Central and West Africa. Mol. Ecol. 24, 6134–6147 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Hou, Z. C. et al. Elephant transcriptome provides insights into the evolution of eutherian placentation. Genome Biol. Evol. 4, 713–725 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 62.

    Tollis, M. et al. Elephant Genomes Reveal Insights into Differences in Disease Defense Mechanisms between Species. bioRxiv 2020.05.29.124396 (2020).

  • 63.

    Rohland, N. et al. Genomic DNA sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants. PLoS Biol. 8, 16–19 (2010).

    Article 
    CAS 

    Google Scholar 

  • 64.

    Lynch, V. J. et al. Elephantid genomes reveal the molecular bases of woolly mammoth adaptations to the Arctic. Cell Rep. 12, 217–228 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Yang, H., Golenberg, E. M. & Shoshani, J. Phylogenetic resolution within the elephantidae using fossil DNA sequence from the American mastodon (Mammut americanum) as an outgroup. Proc. Natl. Acad. Sci. U. S. A. 93, 1190–1194 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Orlando, L., Hänni, C. & Douady, C. J. Mammoth and elephant phylogenetic relationships: Mammut americanum, the missing outgroup. Evol. Bioinforma. 3, 45–51 (2007).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Eggert, L. S., Eggert, J. A. & Woodruff, D. S. Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol. Ecol. 12, 1389–1402 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Vidya, T. N. C. Evolutionary history and population genetic structure of Asian elephants in India. Indian J. Hist. Sci. 51, 391–405 (2016).

    Google Scholar 

  • 69.

    Schuttler, S. G., Whittaker, A., Jeffery, K. J. & Eggert, L. S. African forest elephant social networks: fission-fusion dynamics, but fewer associations. Endanger. Species Res. 25, 165–173 (2014).

    Article 

    Google Scholar 

  • 70.

    Ahlering, M. A. et al. Identifying source populations and genetic structure for savannah elephants in human-dominated landscapes and protected areas in the Kenya-Tanzania borderlands. PLoS ONE 7, e52288 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Vidya, T. N. C., Fernando, P., Melnick, D. J. & Sukumar, R. Population differentiation within and among Asian elephant (Elephas maximus) populations in southern India. Heredity (Edinb). 94, 71–80 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Sukumar, R., Ramakrishnan, U. & Santosh, J. A. Impact of poaching on an Asian elephant population in Periyar, southern India: a model of demography and tusk harvest. Anim. Conserv. 1, 281–291 (1998).

    Article 

    Google Scholar 

  • 73.

    Mondol, S., Mailand, C. R. & Wasser, S. K. Male biased sex ratio of poached elephants is negatively related to poaching intensity over time. Conserv. Genet. 15, 1259–1263 (2014).

    Article 

    Google Scholar 

  • 74.

    Breuer, T., Maisels, F. & Fishlock, V. The consequences of poaching and anthropogenic change for forest elephants. Conserv. Biol. 30, 1019–1026 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Mailand, C. & Wasser, S. K. Isolation of DNA from small amounts of elephant ivory. Nat. Protoc. 2, 2228–2232 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Lee, E. et al. The identification of elephant ivory evidences of illegal trade with mitochondrial cytochrome b gene and hypervariable D-loop region. J. Forensic Leg. Med. 20, 174–178 (2015).

    Article 

    Google Scholar 

  • 77.

    Chakraborty, S., Boominathan, D., Desai, A. A. & Vidya, T. N. C. Using genetic analysis to estimate population size, sex ratio, and social organization in an Asian elephant population in conflict with humans in Alur, southern India. Conserv. Genet. 15, 897–907 (2014).

    Article 

    Google Scholar 

  • 78.

    Fernando, P. & Pastorini, J. Range-wide status of Asian elephants. Gajah 35, 15–20 (2011).

    Google Scholar 

  • 79.

    Ishida, Y., Gugala, N. A., Georgiadis, N. J. & Roca, A. L. Evolutionary and demographic processes shaping geographic patterns of genetic diversity in a keystone species, the African forest elephant (Loxodonta cyclotis). Ecol. Evol. 8, 4919–4931 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Kongrit, C. Genetic tools for the conservation of wild Asian elephants. Int. J. Biol. 9, 1 (2017).

    Article 

    Google Scholar 

  • 81.

    McComb, K., Shannon, G., Sayialel, K. N. & Moss, C. Elephants can determine ethnicity, gender, and age from acoustic cues in human voices. Proc. Natl. Acad. Sci. U. S. A. 111, 5433–5438 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Prithiviraj, F. & Melnick, D. J. Molecular sexing eutherina mammals. Mol. Ecol. Notes 1, 350–353 (2001).

    Article 

    Google Scholar 

  • 83.

    Vandebona, H. et al. DNA fingerprints of the Asian elephant in Sri Lanka, Elephas maximus maximus, using multilocus probe 33.15 (Jeffreys). J. Natl. Sci. Found. Sri Lanka 32, 83–96 (2004).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Gugala, N. A., Ishida, Y., Georgiadis, N. J. & Roca, A. L. Development and characterization of microsatellite markers in the African forest elephant (Loxodonta cyclotis). BMC Res. Notes 9, 4–9 (2016).

    Article 
    CAS 

    Google Scholar 

  • 85.

    Zhang, L. et al. Asian elephants in China: estimating population size and evaluating habitat suitability. PLoS ONE 10, 1–13 (2015).

    Google Scholar 

  • 86.

    Vartia, S. et al. A novel method of microsatellite genotyping-by-sequencing using individual combinatorial barcoding. R. Soc. Open Sci. 3, 150565 (2016).

    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 87.

    Tighe, A. J. et al. Testing PCR amplification from elephant dung using silica-dried swabs. Pachyderm 59, 56–65 (2018).

    Google Scholar 

  • 88.

    Bourgeois, S. et al. Improving cost-efficiency of faecal genotyping: new tools for elephant species. PLoS ONE 14, e0210811 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Hedges, S., Johnson, A., Ahlering, M., Tyson, M. & Eggert, L. S. Accuracy, precision, and cost-effectiveness of conventional dung density and fecal DNA based survey methods to estimate Asian elephant (Elephas maximus) population size and structure. Biol. Conserv. 159, 101–108 (2013).

    Article 

    Google Scholar 

  • 90.

    Moßbrucker, A. M. et al. Non-invasive genotyping of Sumatran elephants : implications for conservation The Sumatran elephant (Elephas maximus sumatranus) is one of three currently recognized subspecies. Trop. Conserv. Sci. 8, 745–759 (2015).

    Article 

    Google Scholar 

  • 91.

    Ishida, Y. et al. Short amplicon microsatellite markers for low quality elephant DNA. Conserv. Genet. Resour. 4, 491–494 (2012).

    Article 

    Google Scholar 

  • 92.

    Thitaram, C. et al. Evaluation and selection of microsatellite markers for an identification and parentage test of Asian elephants (Elephas maximus). Conserv. Genet. 9, 921–925 (2008).

    CAS 
    Article 

    Google Scholar 

  • 93.

    Lorenz, T. C. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J. Vis. Exp. 2, 1–15. https://doi.org/10.3791/3998 (2012).

    CAS 
    Article 

    Google Scholar 

  • 94.

    Litt, M. & Luty, J. A. Hypervariable amplification. Am. J. Hum. Genet. 44, 397–401 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 95.

    Park, Y. J., Lee, J. K. & Kim, N. S. Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 14, 4546–4569 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Vieira, M. L. C., Santini, L., Diniz, A. L. & Munhoz, C. D. F. Microsatellite markers: what they mean and why they are so useful. Genet. Mol. Biol. 39, 312–328 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Stafne, E. T., Clark, J. R., Weber, C. A., Graham, J. & Lewers, K. S. Simple sequence repeat (SSR) markers for genetic mapping of raspberry and blackberry. J. Am. Soc. Hortic. Sci. 130, 722–728 (2005).

    CAS 
    Article 

    Google Scholar 

  • 98.

    Tommasini, L. et al. The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor. Appl. Genet. 106, 1091–1101 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 99.

    Norrgard, K. Forensics, DNA Fingerprinting, and CODIS. Nat. Educ. 1, 35 (2008).

    Google Scholar 

  • 100.

    Maroju, P. A. et al. Schrodinger’s scat: A critical review of the currently available tiger (Panthera Tigris) and leopard (Panthera pardus) specific primers in India, and a novel leopard specific primer. BMC Genet. 17, 1–6 (2016).

    Article 

    Google Scholar 

  • 101.

    Waits, L. P. & Pearkau, D. Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J. Wildl. Manag. 69, 1419–1433 (2005).

    Article 

    Google Scholar 

  • 102.

    Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, 1–7 (2008).

    Article 
    CAS 

    Google Scholar 

  • 103.

    Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A. & Johnson, E. A. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 17, 240–248 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Delord, C. et al. A cost-and-time effective procedure to develop SNP markers for multiple species: a support for community genetics. Methods Ecol. Evol. 9, 1959–1974 (2018).

    Article 

    Google Scholar 

  • 105.

    Magwanga, R. O. et al. GBS mapping and analysis of genes conserved between Gossypium tomentosum and Gossypium hirsutum cotton cultivars that respond to drought stress at the seedling stage of the BC2F2generation. Int. J. Mol. Sci. 19, 1614 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 106.

    Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, 1–10 (2011).

    Article 
    CAS 

    Google Scholar 

  • 107.

    Chandrasekara, C. H. W. M. R. B., Wijesundera, W. S. S., Perera, H. N., Chong, S. S. & Rajan-Babu, I. S. Cascade screening for fragile X syndrome/CGG repeat expansions in children attending special education in Sri Lanka. PLoS ONE 10, 1–10 (2015).

    Google Scholar 

  • 108.

    Felsenstein, J. 2002. {PHYLIP}(Phylogen. I. P. ver. 3. 6a3.—P. by the author. PHYLIP(Phylogeny Inference Package) ver. 3.6a3. (2002).

  • 109.

    Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76, 5269–5273 (1979).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 

  • 110.

    Rambaut, A. FigTree ver.1. 3.1: tree figure drawing tool. http://tree.bio.ed.ac.uk/software/figtree. (2009).


  • Source: Ecology - nature.com

    The serotonin transporter gene and female personality variation in a free-living passerine

    Keeping humanity central to solving climate change