Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).
Caughley, G. & Sinclair, A. R. E. Wildlife Ecology and Management (Blackwell Science, 1994).
Servanty, S. et al. Influence of harvesting pressure on demographic tactics: Implications for wildlife management. J. Appl. Ecol. 48(4), 835–843 (2011).
Google Scholar
Marboutin, E., Bray, Y., Péroux, R., Mauvy, B. & Lartiges, A. Population dynamics in European hare: Breeding parameters and sustainable harvest rates. J. Appl. Ecol. 40(3), 580–591 (2003).
Google Scholar
Stoneberg, R. P. & Jonkel, C. L. Age determination of black bears by cementum layers. J. Wildlife Manage. 30(2), 411–414 (1966).
Google Scholar
Roth, V. L. & Shoshani, J. Dental identification and age determination in Elephas maximus. J. Zool. 214, 567–588 (1988).
Google Scholar
Dutta, S. & Sengupta, P. Men and mice: Relating their ages. Life Sci. 152, 244–248 (2016).
Google Scholar
Dimmick, R. W. & Pelton, M. R. Criteria of sex and age. In Research and Management Techniques for Wildlife and Habitats 5th edn, (ed. Bookhout, T.
A.) 169–214 (The Wildlife Society, Bethesda, MA, US, 1994).
Morris, P. A review of mammalian age determination methods. Mamm. Rev. 2, 69–103 (1972).
Google Scholar
Augusteyn, R. C. On the relationship between rabbit age and lens dry weight: Improved determination of the age of rabbits in the wild. Mol. Vis. 13, 2030–2034 (2007).
Google Scholar
Augusteyn, R. C. Growth of the lens: In vitro observations. Clin. Exp. Optom. 91(3), 226–239 (2008).
Google Scholar
Augusteyn, R. C. Growth of the eye lens: I. Weight accumulation in multiple species. Mol. Vis. 20, 410–426 (2014).
Google Scholar
Lord, D. R. The lens as an indicator of age in cottontail rabbits. J. Wildl. Manage. 23, 358–360 (1959).
Google Scholar
Forsyth, D. M., Garel, M. & McLeod, S. R. Estimating age and age class of harvested hog deer from eye lens mass using frequentist and Bayesian methods. Wildlife biol. 22(4), 137–143 (2016).
Google Scholar
Dudzinski, M. L. & Mykytowycz, R. The eye lens as an indicator of age in the wild rabbit in Australia. CSIRO Wildl. Res. 6, 156–159 (1961).
Google Scholar
Myers, K. & Gilbert, N. Determination of age of wild rabbits in Australia. J. Wildl. Manage. 32, 841–849 (1968).
Google Scholar
Wheeler, S. H. & King, D. R. The use of eye-lens weights for aging wild rabbits, Oryctolagus cuniculus (L.) in Australia. Aust. Wildl. Res. 7, 79–84 (1980).
Google Scholar
Tablado, Z., Revilla, E. & Palomares, F. Breeding like rabbits: Global patterns of variability and determinants of European wild rabbit reproduction. Ecography 32, 310–320. https://doi.org/10.1111/j.1600-0587.2008.05532.x (2009).
Google Scholar
Ferreira, C. et al. Biometrical analysis reveals major differences between the two subspecies of the European rabbit. Biol. J. Linn. Soc. 116, 106–116 (2015).
Google Scholar
Branco, M., Monnerot, M., Ferrand, N. & Templeton, A. R. Postglacial dispersal of the European rabbit (Oryctolagus cuniculus) on the Iberian Peninsula reconstructed from nested clade and mismatch analyses of mitochondrial DNA genetic variation. Evolution 56, 792–803. https://doi.org/10.1111/j.0014-3820.2002.tb01390.x (2002).
Google Scholar
Gómez, A. & Lunt, D. H. Refugia within refugia: Patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography in Southern European Refugia (eds Weiss, S. & Ferrand, N.) 155–188 (Springer, 2006).
Geraldes, A. et al. Reduced introgression of the Y chromosome between subspecies of the European rabbit (Oryctolagus cuniculus) in the Iberian Peninsula. Mol. Ecol. 17, 4489–4499 (2008).
Google Scholar
Carneiro, M., Ferrand, N. & Nachman, M. W. Recombination and speciation: Loci near centromeres are more differentiated than loci near telomeres between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics 181, 593–606 (2009).
Google Scholar
Rafati, N. et al. A genomic map of clinal variation across the European rabbit hybrid zone. Mol. Ecol. 27, 1457–1478. https://doi.org/10.1111/mec.14494 (2018).
Google Scholar
Vaquerizas, P. H. et al. The paradox of endangered European rabbits regarded as pests in the Iberian Peninsula: Subspecies differences in trends matter. Endang. Species Res. 43, 99–102 (2020).
Google Scholar
Arques, J. & Peiró, V. Estructura de Sexos y Edades de una población de Conejos (Oryctolagus cuniculus) del sudeste de España. Mediterránea. Serie de Estudios Biológicos 18, 1–33 (2005).
Trout, R. C. & Smith, G. C. The reproductive productivity of the wild rabbit (Oryctolagus cuniculus) in southern England on sites with different soils. J. Zool. 237(3), 411–422 (1995).
Google Scholar
Boussès, P., Arthur, C. & Chapuis, J. L. Rôle du facteur trophique sur la biologie des populations de lapins (Oryctolagus cuniculus L.) des Iles Kerguelen. Revue d’écologie 43, 329–343 (1988).
Bonino, N. & Donadio, E. Body parameters and sexual dimorphism in the European wild rabbit (Oryctolagus cuniculus) introduced in Argentina. Mastozool. Neotrop. 17(1), 123–127 (2010).
Carneiro, M. et al. Rabbit genome analysis reveals a polygenic basic for phenotypic change during domestication. Science 345(6200), 1074–1079 (2014).
Google Scholar
Myers, K. The rabbit in Australia. In Dynamics of Numbers in Populations (eds den Boer, P. J. & Gradwell, G. R.) 478–506 (Proceedings of the NATO Advanced Study Institute Oosterbeek, 1970).
Delibes-Mateos, M., Villafuerte, R., Cooke, B. & Alves, P. C. Oryctolagus cuniculus (Linnaeus, 1758). In Lagomorphs: Pikas, Rabbits and Hares of the World (eds Smith, A. T. et al.) 99–104 (John Hopkins University Press, 2018).
Carneiro, M. et al. The genomic architecture of population divergence between subspecies of the European rabbit. PLoS. Genet. 10(8), e1003519. https://doi.org/10.1371/journal.pgen.1003519 (2014).
Google Scholar
Bonino, N. & Soriguer, R. Genetic lineages of feral populations of the Oryctolagus cuniculus (Leporidae, Lagomorpha) in Argentina. Mammalia 72, 355–357 (2008).
Google Scholar
Branco, M. & Ferrand, N. Biochemical and population genetics of the rabbit, Oryctolagus cuniculus, carbonic anhydrases I and II, from the Iberian Peninsula and France. Biochem. Genet. 41, 391–404. https://doi.org/10.1023/B:BIGI.0000007774.39262.8e (2003).
Google Scholar
Geraldes, A., Ferrand, N. & Nachman, M. W. Contrasting patterns of introgression at X-linked loci across the hybrid zone between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics 173, 919–933 (2006).
Google Scholar
Lo Valvo, M., Scala, A. & Scalisi, M. Biometric characterization and taxonomic considerations of European rabbit Oryctolagus cuniculus (Linnaeus 1758) in Sicily (Italy). World Rabbit Sci. 22(3), 207–214. https://doi.org/10.4995/wrs.2014.1467 (2014).
Google Scholar
Miller, G. S. Catalogue of the Mammals of Western Europe in the Collection of the British Museum (Trustees of the British Museum, 1912).
Sharples, C. M., Fa, J. E. & Bell, D. J. Geographical variation in size in the European rabbit Oryctolagus cuniculus (Lagomorpha: Leporidae) in western Europe and North Africa. Zool. J. Linn. Soc-Lond. 117, 141–158. https://doi.org/10.1111/j.1096-3642.1996.tb02153.x (1996).
Google Scholar
Carro, F., Ortega, M. & Soriguer, R. C. Is restocking a useful tool for increasing rabbit densities?. Global Ecol. Conserv. 17, e00560. https://doi.org/10.1016/j.gecco.2019.e00560 (2019).
Google Scholar
Angulo, E. & Villafuerte, R. Modelling hunting strategies for the conservation of wild rabbit populations. Biol. Conserv. 115, 291–301 (2003).
Google Scholar
Delibes-Mateos, M., Delibes, M., Ferreras, P. & Villafuerte, R. Key role of European rabbits in the conservation of the Western Mediterranean Basin Hotspot. Conserv. Biol. 22, 1106–1117 (2008).
Google Scholar
Garrido, J. L., Ferreres, J. & Gortázar, C. Las especies cinegéticas españolas en el siglo XXI. (eds. Garrido, J. L., Ferreres, J. & Gortázar, C.)
(Independently published, Ciudad Real, Spain, 2019).
Ríos-Saldaña, C. et al. Control of the European rabbit in central Spain. Eur. J. Wildlife Res. 59, 573–580. https://doi.org/10.1007/s10344-013-0707-x (2013).
Google Scholar
Lees, A. C. & Bell, D. J. A conservation paradox for the 21st century: The European wild rabbit Oryctolagus cuniculus, an invasive alien and an endangered native species. Mammal Rev. 38, 304–320 (2008).
Google Scholar
Cooke, B. D. Rabbits: Manageable environmental pests or participants in new Australian ecosystems?. Wildlife Res. 39, 279–289 (2013).
Google Scholar
Calvete, C., Angulo, E. & Estrada, R. Conservation of European wild rabbit populations when hunting is age and sex selective. Biol. Conserv. 121(4), 623–634 (2005).
Google Scholar
Delibes-Mateos, M., Ramírez, E., Ferreras, P. & Villafuerte, R. Translocations as a risk for the conservation of European wild rabbit Oryctolagus cuniculus lineages. Oryx 42(2), 259–264 (2008).
Google Scholar
Andersen, J. & Jensen, B. Studies on the European hare. XXVIII. The weight of the eye lens in the European hares of known age. Acta Theriol. 17, 87–92 (1972).
Google Scholar
Suchentrunck, F., Willing, R. & Hartl, G. B. On eye lens weights and other age criteria of the Brown hare (Lepus europaeus Pallas, 1778). Z. Säugetierkd. 56, 365–374 (1991).
Villafuerte, R. et al. Large-scale assessment of myxomatosis prevalence in European wild rabbits (Oryctolagus cuniculus) 60 years after first outbreak in Spain. Res. Vet. Sci. 114, 281–286 (2017).
Google Scholar
Rouco, C., Villafuerte, R., Castro, F. & Ferreras, P. Effect of artificial warren size on a restocked European wild rabbit population. Anim. Conserv. 14, 117–123 (2011).
Google Scholar
Southern, N. The ecology and population dynamics of the wild rabbit (Oryctolagus cuniculus). Ann. Appl. Biol. 27, 509–514 (1940).
Google Scholar
Dunnet, G. M. Growth rate of young rabbits, Oryctolagus cuniculus (L.). CSIRO Wildl. Res. 1, 66–67 (1956).
Google Scholar
Ferreira, A. & Ferreira, A. J. Post-weaning growth of endemic Iberian wild rabbit subspecies, Oryctolagus cuniculus algirus, kept in a semi-extensive enclosure: Implications for management and conservation. World Rabbit Sci. 22, 129–136. https://doi.org/10.4995/wrs.2014.1673 (2014).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (Vienna,
Austria, 2020).
du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).
Google Scholar
Burnham, K. P. & Anderson, D. R. Monte Carlo insights and extended examples. In Model Selection and Multimodel Inference, (eds. Burnham K. P. &
Anderson D. R.) https://doi.org/10.1007/978-0-387-22456-5_5). (Springer, New York, NY, US, 2002).
Pastore, M. Overlapping: A R package for estimating overlapping in empirical distributions. J. Open Source Softw. 32, 1023 (2018).
Google Scholar
Pastore, M. & Calcagnì, A. Measuring distribution similarities between samples: A distribution-free overlapping Index. Front. Psychol. 10, 1089 https://doi.org/10.3389/fpsyg.2019.01089 (2019).
Google Scholar
Williams, C. & Moore, R. Phenotypic adaptation and natural selection in the wild rabbit, Oryctolagus cuniculus, Australia. J. Anim. Ecol. 58(2), 495–507. https://doi.org/10.2307/4844 (1989).
Google Scholar
Source: Ecology - nature.com