in

Projected effects of ocean warming on an iconic pelagic fish and its fishery

  • 1.

    Bâki Iz, H. Is the global sea surface temperature rise accelerating?. Geod. Geodyn. 9, 432–438 (2018).

    Article 

    Google Scholar 

  • 2.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Global Biogeochem. Cycles 18 (2004).

  • 4.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Beaugrand, G. & Kirby, R. R. How do marine pelagic species respond to climate change? Theories and observations. Ann. Rev. Mar. Sci. 10, 169–197 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Verity, P. G., Smetacek, V. & Smayda, T. J. Status, trends and the future of the marine pelagic ecosystem. Environ. Conserv. 29, 207–237 (2002).

    Article 

    Google Scholar 

  • 8.

    Palko, B. J., Beardsley, G. L. & Richards, W. J. Synopsis of the biological data on dolphin-fishes, Coryphaena hippurus Linnaeus and Coryphaena equiselis Linnaeus. NOAA Tech. Rep. NMFS Circ. 443, 1–28 (1982).

    Google Scholar 

  • 9.

    Oxenford, H. A. Biology of the dolphinfish (Coryphaena hippurus) in the western central Atlantic: A review. Sci. Mar. 63, 277–301 (1999).

    Article 

    Google Scholar 

  • 10.

    Moltó, V. et al. A global review on the biology of the dolphinfish (Coryphaena hippurus) and its fishery in the Mediterranean Sea: advances in the last two decades. Rev. Fish. Sci. Aquac. (2020).

  • 11.

    FAO. Coryphaena hippurus (Linnaeus, 1758). Species fact sheets. http://www.fao.org/fishery/species/3130/en (2019).

  • 12.

    Morales-Nin, B., Cannizzaro, L., Massuti, E., Potoschi, A. & Andaloro, F. An overview of the FADs fishery in the Mediterranean Sea. Proc. Tuna Fish. Fish Aggreg. Dev. Symp. 184–207 (2000).

  • 13.

    Morales-Nin, B. Mediterranean FADs fishery: An overview. In Second International Symposium on Tuna Fisheries and Fish Aggregating Devices (2011).

  • 14.

    Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 33, L08707 (2006).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Durrieu de Madron, X. et al. Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean. Prog. Oceanogr. 91, 97–166 (2011).

  • 16.

    Adloff, F. et al. Mediterranean sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 45, 2775–2802 (2015).

    Article 

    Google Scholar 

  • 17.

    Darmaraki, S. et al. Future evolution of marine heatwaves in the mediterranean sea. Clim. Dyn. 53, 1371–1392 (2019).

    Article 

    Google Scholar 

  • 18.

    Bignami, S., Sponaugle, S. & Cowen, R. K. Effects of ocean acidification on the larvae of a high-value pelagic fisheries species, mahi-mahi Coryphaena hippurus. Aquat. Biol. 21, 249–260 (2014).

    Article 

    Google Scholar 

  • 19.

    Norton, J. G. Apparent habitat extensions of dolphinfish (Coryphaena hippurus) in response to climate transients in the California current*. Sci. Mar. 63, 239–260 (1999).

    Article 

    Google Scholar 

  • 20.

    Chang, S.-K. & Maunder, M. N. Aging material matters in the estimation of von Bertalanffy growth parameters for dolphinfish (Coryphaena hippurus). Fish. Res. 119–120, 147–153 (2012).

    Article 

    Google Scholar 

  • 21.

    Furukawa, S. et al. Age, growth, and reproductive characteristics of dolphinfish Coryphaena hippurus in the waters off west Kyushu, northern East China Sea. Fish. Sci. 78, 1153–1162 (2012).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Asch, R. G., Stock, C. A. & Sarmiento, J. L. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Glob. Chang. Biol. 25, 2544–2559 (2019).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Shoji, J. et al. Possible effects of global warming on fish recruitment: shifts in spawning season and latitudinal distribution can alter growth of fish early life stages through changes in daylength. ICES J. Mar. Sci. 68, 1165–1169 (2011).

    Article 

    Google Scholar 

  • 24.

    R Core Team. R: A Language and Environment for Statistical Computing. Version 3.6.2. https://www.R-project.org/ (R Foundation for Satistical Computing, 2019).

  • 25.

    Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).

    Article 

    Google Scholar 

  • 26.

    Morrongiello, J. R., Thresher, R. E. & Smith, D. C. Aquatic biochronologies and climate change. Nat. Clim. Chang. 2, 849–857 (2012).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Schismenou, E. et al. Seasonal changes in otolith increment width trajectories and the effect of temperature on the daily growth rate of young sardines. Fish. Oceanogr. 25, 362–372 (2016).

    Article 

    Google Scholar 

  • 28.

    Schismenou, E. et al. Disentangling the effects of inherent otolith growth and model-simulated ecosystem parameters on the daily growth rate of young anchovies. Mar. Ecol. Prog. Ser. 515, 227–237 (2014).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Catalán, I. A. et al. Daily otolith growth and ontogenetic geochemical signatures of age-0 anchovy (Engraulis encrasicolus) in the gulf of cádiz (SW Spain). Mediterr. Mar. Sci. 15, 781–789 (2014).

    Article 

    Google Scholar 

  • 30.

    Tanner, S. E. et al. Regional climate, primary productivity and fish biomass drive growth variation and population resilience in a small pelagic fish. Ecol. Indic. 103, 530–541 (2019).

    Article 

    Google Scholar 

  • 31.

    Ito, S., Okunishi, T., Kishi, M. J. & Wang, M. Modelling ecological responses of Pacific saury (Cololabis saira) to future climate change and its uncertainty. ICES J. Mar. Sci. 70, 980–990 (2013).

    Article 

    Google Scholar 

  • 32.

    Vinagre, C., Ferreira, T., Matos, L., Costa, M. J. & Cabral, H. N. Latitudinal gradients in growth and spawning of sea bass, Dicentrarchus labrax, and their relationship with temperature and photoperiod. Estuar. Coast. Shelf Sci. 81, 375–380 (2009).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Suthers, I. M. & Sundby, S. Role of the midnight sun: Comparative growth of pelagic juvenile cod (Gadus morhua) from the Arcto-Norwegian and a Nova Scotian stock. ICES J. Mar. Sci. 53, 827–836 (1996).

    Article 

    Google Scholar 

  • 34.

    Pepin, P. et al. Once upon a larva: Revisiting the relationship between feeding success and growth in fish larvae. ICES J. Mar. Sci. 72, 359–373 (2015).

    Article 

    Google Scholar 

  • 35.

    Fablet, R. et al. Shedding light on fish otolith biomineralization using a bioenergetic approach. PLoS ONE 6, e27055 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Lorenzen, K. Toward a new paradigm for growth modeling in fisheries stock assessments: Embracing plasticity and its consequences. Fish. Res. 180, 4–22 (2016).

    Article 

    Google Scholar 

  • 37.

    Campos-Candela, A., Palmer, M., Balle, S., Álvarez, A. & Alós, J. A mechanistic theory of personality-dependent movement behaviour based on dynamic energy budgets. Ecol. Lett. 22, 213–232 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Payne, M. R. et al. Uncertainties in projecting climate-change impacts in marine ecosystems. ICES J. Mar. Sci. 73, 1272–1282 (2016).

    Article 

    Google Scholar 

  • 39.

    Fernandes, J. A. et al. Can we project changes in fish abundance and distribution in response to climate? Glob. Chang. Biol. (2020).

  • 40.

    Ramírez-Romero, E. et al. Assessment of the skill of coupled physical-biogeochemical models in the NW Mediterranean. Front. Mar. Sci. (2020).

  • 41.

    Rountrey, A. N., Coulson, P. G., Meeuwig, J. J. & Meekan, M. Water temperature and fish growth: Otoliths predict growth patterns of a marine fish in a changing climate. Glob. Chang. Biol. 20, 2450–2458 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Moltó, V., Ospina-Alvarez, A., Gatt, M., Palmer, M. & Catalán, I. A. A Bayesian approach to recover the theoretical temperature-dependent hatch date distribution from biased samples: The case of the common dolphinfish (Coryphaena hippurus). Preprint at: https://arxiv.org/abs/2004.01000 (2020).

  • 43.

    Catalán, I. A. et al. Critically examining the knowledge base required to mechanistically project climate impacts: A case study of Europe’s fish and shellfish. Fish Fish. 1–17 (2019).

  • 44.

    Morrongiello, J. R., Walsh, C. T., Gray, C. A., Stocks, J. R. & Crook, D. A. Environmental change drives long-term recruitment and growth variation in an estuarine fish. Glob. Chang. Biol. 20, 1844–1860 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Baudron, A. R., Needle, C. L., Rijnsdorp, A. D. & Tara Marshall, C. Warming temperatures and smaller body sizes: Synchronous changes in growth of North Sea fishes. Glob. Chang. Biol. 20, 1023–1031 (2014).

  • 46.

    Pauly, D. & Cheung, W. W. L. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob. Chang. Biol. 24, e15–e26 (2018).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Wenger, A. S., Whinney, J., Taylor, B. & Kroon, F. The impact of individual and combined abiotic factors on daily otolith growth in a coral reef fish. Sci. Rep. 6, 1–10 (2016).

    Article 
    CAS 

    Google Scholar 

  • 48.

    García, A. et al. Climate-induced environmental conditions influencing interannual variability of Mediterranean bluefin (Thunnus thynnus) larval growth. Fish. Oceanogr. 22, 273–287 (2013).

    Article 

    Google Scholar 

  • 49.

    Pimentel, M., Pegado, M., Repolho, T. & Rosa, R. Impact of ocean acidification in the metabolism and swimming behavior of the dolphinfish (Coryphaena hippurus) early larvae. Mar. Biol. 161, 725–729 (2014).

    CAS 
    Article 

    Google Scholar 

  • 50.

    FAO-CopeMed II. Report of the CopeMed II-MedSudMed Workshop on the Status of Coryphaena hippurus Fisheries in the Western-Central Mediterranean, Cádiz, Spain, 8–9 October 2019. CopeMed Technical Documents No. 54 (GCP/INT/028SPA-GCP/INT/362/EC). 1–22 (2019).

  • 51.

    Tittensor, D. P. et al. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1. 0. Geosci. Model Dev. 11, 1421–1442 (2018).

  • 52.

    Massutí, E. & Morales-Nin, B. Reproductive biology of dolphin-fish (Coryphaena hippurus L.) off the island of Majorca (western Mediterranean). Fish. Res. 30, 57–65 (1997).

  • 53.

    Massutí, E. & Morales-Nin, B. Seasonality and reproduction of dolphin-fish (Coryphaena hippurus) in the Western Mediterranean*. Sci. Mar. 59, 357–364 (1995).

    Google Scholar 

  • 54.

    Potoschi, A., Reñones, O. & Cannizzaro, L. Sexual development, maturity and reproduction of dolphinfish (Coryphaena hippurus) in the western and central Mediterranean*. Sci. Mar. 63, 367–372 (1999).

    Article 

    Google Scholar 

  • 55.

    Alemany, F. et al. Influence of physical environmental factors on the composition and horizontal distribution of summer larval fish assemblages off Mallorca island (Balearic archipelago, western Mediterranean). J. Plankton Res. 28, 473–487 (2006).

    Article 

    Google Scholar 

  • 56.

    Torres, A. P. et al. Decapod crustacean larval communities in the Balearic Sea (western Mediterranean): Seasonal composition, horizontal and vertical distribution patterns. J. Mar. Syst. 138, 112–126 (2014).

    Article 

    Google Scholar 

  • 57.

    Massutí, E., Deudero, S., Sánchez, P. & Morales-Nin, B. Diet and Feeding of Dolphin (Coryphaena hippurus) in Western Mediterranean Waters. Bull. Mar. Sci. 63, 329–341 (1998).

    Google Scholar 

  • 58.

    Merten, W., Appeldoorn, R., Rivera, R. & Hammond, D. Diel vertical movements of adult male dolphinfish (Coryphaena hippurus) in the western central atlantic as determined by use of pop-up satellite archival transmitters. Mar. Biol. 161, 1823–1834 (2014).

    Article 

    Google Scholar 

  • 59.

    D’Ortenzio, F. & D’Alcalà, M. R. On the trophic regimes of the Mediterranean Sea: A satellite analysis. Biogeosciences 5, 2959–2983 (2008).

    Google Scholar 

  • 60.

    IPCC. Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Core Writing Team, Pachauri, R.K., Meyer, L.A. eds.). (IPCC, 2014).

  • 61.

    Grazzini, F. & Viterbo, P. Record-breaking warm sea surface temperature of the Mediterranean Sea. ECMWF Newsl. 98, 30–31 (2003).

    Google Scholar 

  • 62.

    Olita, A., Sorgente, R., Ribotti, A., Natale, S. & Gaberšek, S. Effects of the 2003 European heatwave on the Central Mediterranean Sea surface layer: a numerical simulation. Eur. Geosci. Union 3, 85–125 (2006).

    Google Scholar 

  • 63.

    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Chang. Biol. 15, 1090–1103 (2009).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173 (2018).

    Article 

    Google Scholar 

  • 66.

    Schlegel, R. W. Marine Heatwave Tracker. http://www.marineheatwaves.org/tracker. https://doi.org/10.5281/zenodo.3787872 (2020).

  • 67.

    Ricker, W. E. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Bd. Can. 191, 1–382 (1975).

  • 68.

    Solano-Fernández, M., Montoya-Márquez, J. A., Gallardo-Cabello, M. & Espino-Barr, E. Age and growth of the Dolphinfish Coryphaena hippurus in the coast of Oaxaca and Chiapas, Mexico. Rev. Biol. Mar. Oceanogr. 50, 491–505 (2015).

    Article 

    Google Scholar 

  • 69.

    Höhne, L. et al. Environmental determinants of perch (Perca fluviatilis) growth in gravel pit lakes and the relative performance of simple versus complex ecological predictors. Ecol. Freshw. Fish 00, 1–17 (2020).

    Google Scholar 

  • 70.

    Kuhn, M. caret: Classification and Regression Training. R package. Version 6.0-86. https://CRAN.R-project.org/package=caret (2020).

  • 71.

    Su, Y.-S. & Yajima, M. R2jags: Using R to Run ‘JAGS’. R Package Version 0.5-7. https://CRAN.R-project.org/package=R2jags (2015).

  • 72.

    Plummer, M. rjags: Bayesian Graphical Models Using MCMC. R Package Version 4-10. https://CRAN.R-project.org/package=rjags (2015).

  • 73.

    Then, A. Y., Hoenig, J. M., Hall, N. G. & Hewitt, D. A. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES J. Mar. Sci. 72, 82–92 (2015).

    Article 

    Google Scholar 

  • 74.

    Massutí, E., Morales-Nin, B. & Moranta, J. Otolith microstructure, age, and growth patterns of dolphin, Coryphaena hippurus, in the western Mediterranean. Fish. Bull. 97, 891–899 (1999).

    Google Scholar 

  • 75.

    Copemed II. Report of the CopeMed II-MedSudMed Workshop on Stock Assessment of Coryphaena hippurus in the Western-Central Mediterranean. Málaga, Spain 13–15 September 2016. Copemed II Technical Documents No. 44 (GCP/INT/028/SPA – GCP/INT/006/EC). Málaga, 2016. 1–31. http://www.faocopemed.org/pdf/publications/CopeMedII_TD44.pdf (2016).


  • Source: Ecology - nature.com

    The serotonin transporter gene and female personality variation in a free-living passerine

    Keeping humanity central to solving climate change