in

High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans

  • 1.

    Danovaro, R., Snelgrove, P. V. R. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Ebbe, B. et al. In Life in the World’s Oceans: Diversity, Distribution, and Abundance (ed. McIntyre, A. D.) 139–160 (Blackwell Publishing Ltd, 2010).

  • 3.

    Edgcomb, V. Marine protist associations and environmental impacts across trophic levels in the twilight zone and below. Curr. Opin. Microbiol. 31, 169–175 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Bienhold, C., Zinger, L., Boetius, A. & Ramette, A. Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLoS ONE 11, e0148016 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 5.

    del Campo, J. & Massana, R. Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist 162, 435–448 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Gooday, A. J., Schoenle, A., Dolan, J. R. & Arndt, H. Protist diversity and function in the dark ocean—challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur. J. Protistol. 75, 125721 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Caron, D. A. et al. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat. Rev. Microbiol. 15, 6–20 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Jürgens, K. & Massana, R. In Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 383–441 (Wiley, 2008).

  • 10.

    Moran, M. A. The global ocean microbiome. Science 350, aac8455 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 11.

    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 12.

    Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    Article 

    Google Scholar 

  • 13.

    Patterson, D. J., Nygaard, K., Steinberg, G. & Turley, C. M. Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic. J. Mar. Biol. Assoc. UK 73, 67 (1993).

    Article 

    Google Scholar 

  • 14.

    Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 15.

    Arndt, H. et al. In The Flagellates—Unity, Diversity and Evolution (eds. Leadbeater, B. S. & Green, J. C.) 240–268 (Taylor & Francis Ltd, 2000).

  • 16.

    Boenigk, J. & Arndt, H. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van. Leeuwenhoek 81, 465–480 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Caron, D. A., Davis, P. G., Madin, L. P. & Sieburth, J. M. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218, 795–797 (1982).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Gooday, A. J. Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. J. Oceanogr. 58, 305–332 (2002).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Molari, M., Manini, E. & Dell’Anno, A. Dark inorganic carbon fixation sustains the functioning of benthic deep-sea ecosystems. Glob. Biogeochem. Cycles 27, 212–221 (2013).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Pasulka, A. et al. SSU-rRNA gene sequencing survey of benthic microbial eukaryotes from Guaymas Basin hydrothermal vent. J. Eukaryot. Microbiol. 66, 637–653 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Stoeck, T., Taylor, G. T. & Epstein, S. S. Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl. Environ. Microbiol. 69, 5656–5663 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Pachiadaki, M. G. et al. In situ grazing experiments apply new technology to gain insights into deep-sea microbial food webs. Deep Sea Res. Part II Top. Stud. Oceanogr. 129, 223–231 (2016).

    Article 

    Google Scholar 

  • 23.

    Cordier, T., Barrenechea, I., Lejzerowicz, F., Reo, E. & Pawlowski, J. Benthic foraminiferal DNA metabarcodes significantly vary along a gradient from abyssal to hadal depths and between each side of the Kuril-Kamchatka trench. Prog. Oceanogr. 178, 102175 (2019).

    Article 

    Google Scholar 

  • 24.

    Pawlowski, J. et al. Eukaryotic richness in the abyss: insights from pyrotag sequencing. PLoS ONE 6, e18169 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Scheckenbach, F., Hausmann, K., Wylezich, C., Weitere, M. & Arndt, H. Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor. Proc. Natl Acad. Sci. USA 107, 115–120 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Pernice, M. C. et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Schlitzer, R. Ocean Data View (2012). http://odv.awi.de.

  • 28.

    Schoenle, A., Nitsche, F., Werner, J. & Arndt, H. Deep-sea ciliates: recorded diversity and experimental studies on pressure tolerance. Deep Sea Res. Part I: Oceanograp. Res. Pap. 128, 55–66 (2017).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Živaljić, S. et al. A barotolerant ciliate isolated from the abyssal deep sea of the North Atlantic: Euplotes dominicanus sp. n. (Ciliophora, Euplotia). Eur. J. Protistol. 73, 125664 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Logares, R. et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome 8, 55 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Mahé, F. et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1, 0091 (2017).

    Article 

    Google Scholar 

  • 32.

    Forster, D. et al. Benthic protists: the under-charted majority. FEMS Microbiol. Ecol. 92, fiw120 (2016).

  • 33.

    Schoenle, A., Hohlfeld, M., Hermanns, K. & Arndt, H. V9_DeepSea (Deep Sea Reference Database) [Data set]. Commun. Biol., Zenodo https://doi.org/10.5281/zenodo.4305675 (2021).

  • 34.

    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucl. Acids Res. 41, D597–D604 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Flegontova, O. et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Clopton, R. E., Janovy, J. & Percival, T. J. Host stadium specificity in the gregarine assemblage parasitizing Tenebrio molitor. J. Parasitol. 78, 334–337 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Leander, B. S. Marine gregarines: evolutionary prelude to the apicomplexan radiation? Trends Parasitol. 24, 60–67 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 38.

    del Campo, J. et al. Assessing the diversity and distribution of apicomplexans in host and free-living environments using high-throughput amplicon data and a phylogenetically informed reference framework. Front. Microbiol. 10, 2373 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Baker, P. et al. Potential contribution of surface-dwelling Sargassum algae to deep-sea ecosystems in the southern North Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 148, 21–34 (2018).

    Article 

    Google Scholar 

  • 41.

    Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Xu, D. et al. Pigmented microbial eukaryotes fuel the deep sea carbon pool in the tropical Western Pacific Ocean. Environ. Microbiol. 20, 3811–3824 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 7608 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Schoenle, A. et al. Global comparison of bicosoecid Cafeteria-like flagellates from the deep ocean and surface waters, with reorganization of the family Cafeteriaceae. Eur. J. Protistol. 73, 125665 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Massana, R. et al. Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate. ISME J. 15, 154–167 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Živaljić, S. et al. Survival of marine heterotrophic flagellates isolated from the surface and the deep sea at high hydrostatic pressure: literature review and own experiments. Deep Sea Res Part II Top. Stud. Oceanogr. 148, 251–259 (2018).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc. Natl Acad. Sci. USA 108, 13177–13182 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Devey, C. W. et al. Habitat characterization of the Vema Fracture Zone and Puerto Rico Trench. Deep Sea Res Part II Top. Stud. Oceanogr. 148, 7–20 (2018).

    Article 

    Google Scholar 

  • 50.

    Levin, L. A. & Sibuet, M. Understanding continental margin biodiversity: a new imperative. Annu. Rev. Mar. Sci. 4, 79–112 (2012).

    Article 

    Google Scholar 

  • 51.

    Gooday, A. J. In Encyclopedia of Ocean Science (eds. Cochran, J. et al.) 684–705 (Elsevier, 2019).

  • 52.

    Vuillemin, A. et al. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci. Adv. 5, eaaw4108 (2019).

  • 53.

    De Corte, D., Paredes, G., Yokokawa, T., Sintes, E. & Herndl, G. J. Differential response of Cafeteria roenbergensis to different bacterial and archaeal prey characteristics. Micro. Ecol. 78, 1–5 (2019).

    Article 

    Google Scholar 

  • 54.

    Ballen-Segura, M., Felip, M. & Catalan, J. Some mixotrophic flagellate species selectively graze on Archaea. Appl. Environ. Microbiol. 83, e02317–16 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Schoenle, A. et al. Methodological studies on estimates of abundance and diversity of heterotrophic flagellates from the deep-sea floor. J. Mar. Sci. Eng. 4, 22 (2016).

    Article 

    Google Scholar 

  • 56.

    Schoenle, A. et al. New phagotrophic euglenids from deep sea and surface waters of the Atlantic Ocean (Keelungia nitschei, Petalomonas acorensis, Ploeotia costaversata). Eur. J. Protistol. 69, 102–116 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Danovaro, R. Methods for the Study of Deep-sea Sediments, their Functioning and Biodiversity (ed. Danovaro, R.) 181–196 (CRC Press, 2010).

  • 58.

    Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 59.

    Butler, H. & Rogerson, A. Temporal and spatial abundance of naked amoebae (gymnamoebae) in marine benthic sediments of the Clyde Sea area, Scotland. J. Eukaryot. Microbiol. 42, 724–730 (1995).

    Article 

    Google Scholar 

  • 60.

    Goryatcheva, N. V. The cultivation of colourless marine flagellate Bodo marina. Biol. Inland Waters Bull. 11, 25–28 (1971).

    Google Scholar 

  • 61.

    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Van der Auwera, G., Chapelle, S. & De Wächter, R. Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. FEBS Lett. 338, 133–136 (1994).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Hillis, D. M., Dixon, M. T. & Ribosomal, D. N. A. Molecular evolution and phylogenetic inference. Q. Rev. Biol. 66, 411–453 (1991).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet 17, 10–12 (2011).

    Article 

    Google Scholar 

  • 65.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Mahé, F. Stampa: sequence taxonomic assigment by massive pairwise aligments. https://github.com/frederic-mahe/stampa (2018).

  • 68.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

  • 69.

    Vavrek, M. J. Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 14, 1T (2011).

    Google Scholar 

  • 70.

    Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).

    Article 

    Google Scholar 

  • 71.

    Oksanen, J. et al. vegan: Community Ecology Package. The R Project for Statistical Computing. https://cran.r-project.org, https://github.com/vegandevs/vegan (2019).

  • 72.

    Hennig, C. fpc: Flexible Procedures for Clustering. The R Project for Statistical Computing. https://www.unibo.it/sitoweb/christian.hennig/en/ (2019).

  • 73.

    Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots. The R Project for Statistical Computing. https://rdrr.io/cran/VennDiagram/ (2018).

  • 74.

    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 75.

    Kolde, R. pheatmap: Pretty Heatmaps. The R Project for Statistical Computing. https://CRAN.R-project.org/package=pheatmap (2019).

  • 76.

    Archibald, J. M., Simpson, A. G. B. & Slamovits, C. H. Handbook of the Protists. (eds. Archibald, J. M. et al.) 1–1657 (Springer, 2017).

  • 77.

    Okamura, T. & Kondo, R. Suigetsumonas clinomigrationis gen. et sp. nov., a novel facultative anaerobic nanoflagellate isolated from the meromictic Lake Suigetsu, Japan. Protist 166, 409–421 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 78.

    Rybarski, A. et al. Revision of the phylogeny of Placididea (Stramenopiles): molecular and morphological diversity of novel placidid protists from extreme aquatic environments. Eur. J. Protistol.(in press).

  • 79.

    Scheckenbach, F., Wylezich, C., Weitere, M., Hausmann, K. & Arndt, H. Molecular identity of strains of heterotrophic flagellates isolated from surface waters and deep-sea sediments of the South Atlantic based on SSU rDNA. Aquat. Microb. Ecol. 38, 239–247 (2005).

    Article 

    Google Scholar 

  • 80.

    Park, J. S. & Simpson, A. G. B. Characterization of halotolerant Bicosoecida and Placididea (Stramenopila) that are distinct from marine forms, and the phylogenetic pattern of salinity preference in heterotrophic stramenopiles: novel halotolerant heterotrophic stramenopiles. Environ. Microbiol. 12, 1173–1184 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Moriya, M., Nakayama, T. & Inouye, I. Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (Stramenopiles, Incertae Sedis). Protist 151, 41–55 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 82.

    Živaljić, S. et al. Influence of hydrostatic pressure on the behaviour of three ciliate species isolated from the deep sea. Mar. Biol. 167, 63 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Spencer Compton, Karna Morey, Tara Venkatadri, and Lily Zhang named 2021-22 Goldwater Scholars

    Navigating beneath the Arctic ice