Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).
Google Scholar
Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330 (2004).
Google Scholar
Régnier, C. et al. Mass extinction in poorly known taxa. Proc. Natl. Acad. Sci. USA 112, 7761–7766 (2015).
Google Scholar
Cuttelod, A., Seddon, M. & Neubert, E. European Red List of Non-Marine Molluscs (2011).
Aubry, S., Labaune, C., Magnin, F., Roche, P. & Kiss, L. Active and passive dispersal of an invading land snail in Mediterranean France. J. Anim. Ecol. 75, 802–813 (2006).
Google Scholar
Guiller, A. & Madec, L. Historical biogeography of the land snail Cornu aspersum: A new scenario inferred from haplotype distribution in the Western Mediterranean basin. BMC Evol. Biol. 10, 18 (2010).
Google Scholar
Ochman, H., Jonest, J. S. & Selander, R. K. Molecular area effects in Cepaea. Proc. Natl. Acad. Sci. USA 80, 4189–4193 (1983).
Google Scholar
Chueca, L. J., Gómez-Moliner, B. J., Madeira, M. J. & Pfenninger, M. Molecular phylogeny of Candidula (Geomitridae) land snails inferred from mitochondrial and nuclear markers reveals the polyphyly of the genus. Mol. Phylogenet. Evol. 118, 357–368 (2018).
Google Scholar
Moreira, F., Calado, G. & Dias, S. Conservation status of a recently described endemic land snail, Candidula coudensis, from the Iberian peninsula. PLoS ONE 10, e0138464 (2015).
Google Scholar
Sauer, J. & Hausdorf, B. Reconstructing the evolutionary history of the radiation of the land snail genus Xerocrassa on Crete based on mitochondrial sequences and AFLP markers. BMC Evol. Biol. 10, 299 (2010).
Google Scholar
Davison, A. Land snails as a model to understand the role of history and selection in the origins of biodiversity. Popul. Ecol. 44, 129–136 (2002).
Google Scholar
Pfenninger, M., Posada, D. & Shaw, K. Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): Fragmentation, corridor migration, and secondary contact. Evolution (N. Y). 56, 1776–1788 (2002).
Madeira, P. M. et al. High unexpected genetic diversity of a narrow endemic terrestrial mollusc. PeerJ 2017, e3069 (2017).
Google Scholar
Sauer, J., Oldeland, J. & Hausdorf, B. Continuing fragmentation of a widespread species by geographical barriers as initial step in a land snail radiation on Crete. PLoS ONE 8, e62569 (2013).
Google Scholar
Haig, S. M. Molecular contributions to conservation. Ecology 79, 413–425 (1998).
Google Scholar
Ezzine, I. K., Pfarrer, B., Dimassi, N., Said, K. & Neubert, E. At home at least: The taxonomic position of some North African Xerocrassa species (Pulmonata, Geomitridae). Zookeys 712, 1–27 (2017).
Google Scholar
Bank, R. A. & Neubert, E. Checklist of the Land and Freshwater Gastropoda of Europe. http://www.marinespecies.org/aphia.php?p=sourcedetails&id=279050 (2017).
Chueca, L. J., Gómez-Moliner, B. J., Forés, M. & Madeira, M. J. Biogeography and radiation of the land snail genus Xerocrassa (Geomitridae) in the Balearic Islands. J. Biogeogr. 44, 760–772 (2017).
Google Scholar
Martínez-Ortí, A. Xerocrassa montserratensis. The IUCN Red List of Threatened Species e.T22254A9368348. https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T22254A9368348.en (2011).
Martínez-Ortí, A. & Bros, V. Taxonomic clarification of three taxa of Iberian geomitrids, Helix montserratensis Hidalgo, 1870 and subspecies (Gastropoda, Pulmonata), based on morpho–anatomical data. Anim. Biodivers. Conserv. 40, 247–267 (2017).
Google Scholar
Bros, V. Composició de la comunitat de mol· luscs de les codines en el Parc Natural de Sant Llorenç del Munt i l’Obac, i l’impacte del trepig i l’erosió en el Montcau. In VII Monografies de Sant Llorenç del Munt i l’Obac 43–52 (2011).
Santos, X., Bros, V. & Ros, E. Contrasting responses of two xerophilous land snails to fire and natural reforestation. Contrib. Zool. 81, 167–180 (2012).
Google Scholar
Hidalgo, J. G. Description de trois espèces nouvelles d’Helix d’Espagne. J. Conchyliol. 18, 298–299 (1870).
Bofill, A. Catálogo de los moluscos testáceos terrestres del llano de Barcelona. Crónica Científ. 3, 1–24 (1879).
Bofill, A. La Helix montserratensis. Su origen y su distribución en el tiempo y en el espacio. Mem. Real Acad. Cienc. Artes Barcelona 2, 331–343 (1898).
Altimira, C. Notas malacológicas. Contribución al conocimiento de la fauna malacológica terrestre y de agua dulce de Cataluña. Misc. Zool. 3, 7–10 (1971).
Van Riel, P. et al. Molecular systematics of the endemic Leptaxini (Gastropoda: Pulmonata) on the Azores islands. Mol. Phylogenet. Evol. 37, 132–143 (2005).
Google Scholar
Kruckenhauser, L. et al. Paraphyly and budding speciation in the hairy snail (Pulmonata, Hygromiidae). Zool. Scr. 43, 273–288 (2014).
Google Scholar
Dempsey, Z. W., Goater, C. P. & Burg, T. M. Living on the edge: Comparative phylogeography and phylogenetics of Oreohelix land snails at their range edge in Western Canada. BMC Evol. Biol. 20, 3 (2020).
Google Scholar
Ursenbacher, S., Alvarez, C., Armbruster, G. F. J. & Baur, B. High population differentiation in the rock-dwelling land snail (Trochulus caelatus) endemic to the Swiss Jura Mountains. Conserv. Genet. 11, 1265–1271 (2010).
Google Scholar
Jesse, R., Véla, E. & Pfenninger, M. Phylogeography of a land snail suggests trans-Mediterranean Neolithic transport. PLoS ONE 6, e20734 (2011).
Google Scholar
Hausdorf, B. Biogeography of the Limacoidea sensu lato (Gastropoda: Stylommatophora): vicariance events and long-distance dispersal. J. Biogeogr. 27, 379–390 (2000).
Google Scholar
Neiber, M. T., Sagorny, C., Sauer, J., Walther, F. & Hausdorf, B. Phylogeographic analyses reveal Transpontic long distance dispersal in land snails belonging to the Caucasotachea atrolabiata complex (Gastropoda: Helicidae). Mol. Phylogenet. Evol. 103, 172–183 (2016).
Google Scholar
Simonová, J., Simon, O. P., Kapic, Š, Nehasil, L. & Horsák, M. Medium-sized forest snails survive passage through birds’ digestive tract and adhere strongly to birds’ legs: More evidence for passive dispersal mechanisms. J. Molluscan Stud. 82, 422–426 (2016).
Google Scholar
Watanabe, Y. & Chiba, S. High within-population mitochondrial DNA variation due to microvicariance and population mixing in the land snail Euhadra quaesita (Pulmonata: Bradybaenidae). Mol. Ecol. 10, 2635–2645 (2001).
Google Scholar
Nägele, K.-L. & Hausdorf, B. Comparative phylogeography of land snail species in mountain refugia in the European Southern Alps. J. Biogeogr. 42, 821–832 (2015).
Google Scholar
Shakun, J. D., Lea, D. W., Lisiecki, L. E. & Raymo, M. E. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling. Earth Planet. Sci. Lett. 426, 58–68 (2015).
Google Scholar
Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20, 1–17 (2005).
Santos, X., Bros, V. & Miño, À. Recolonization of a burned Mediterranean area by terrestrial gastropods. Biodivers. Conserv. 18, 3153–3165 (2009).
Google Scholar
Bishop, P. Drainage rearrangement by river capture, beheading and diversion. Prog. Phys. Geogr. Earth Environ. 19, 449–473 (1995).
Google Scholar
Castelltort, F. X., Balasch, J. C., Cirés, J. & Colombo, F. Consecuencias de la migración lateral de una cuenca de drenaje (Homoclinal shifting) en la formación de la cuenca erosiva de la Plana de Vic. NE de la Cuenca del Ebro. Geogaceta 61, 55–58 (2017).
Irwin, D. E. Phylogeographic breaks without geographic barriers to gene flow. Evolution (N. Y). 56, 2383–2394 (2002).
Falniowski, A. et al. Melanopsidae (Caenogastropoda: Cerithioidea) from the eastern Mediterranean: Another case of morphostatic speciation. Zool. J. Linn. Soc. 190, 483–507 (2020).
Google Scholar
Proćków, M., Strzała, T., Kuźnik-Kowalska, E., Proćków, J. & Mackiewicz, P. Ongoing speciation and gene flow between taxonomically challenging Trochulus species complex (Gastropoda: Hygromiidae). PLoS ONE 12, e0170460 (2017).
Google Scholar
Fiorentino, V., Manganelli, G., Giusti, F., Tiedemann, R. & Ketmaier, V. A question of time: The land snail Murella muralis (Gastropoda: Pulmonata) reveals constraints on past ecological speciation. Mol. Ecol. 22, 170–186 (2013).
Google Scholar
Bamberger, S. et al. Genome‐wide nuclear data confirm two species in the Alpine endemic land snail Noricella oreinos s.l. (Gastropoda, Hygromiidae). J. Zool. Syst. Evol. Res. 00, 1–23 (2020).
Torrado, H., Carreras, C., Raventos, N., Macpherson, E. & Pascual, M. Individual-based population genomics reveal different drivers of adaptation in sympatric fish. Sci. Rep. 10, 12683 (2020).
Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
Google Scholar
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
Google Scholar
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
Google Scholar
Alexander, A. et al. What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?. Mol. Ecol. 25, 2754–2772 (2016).
Google Scholar
Petit, R. J., El Mousadik, A. & Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12, 844–855 (1998).
Google Scholar
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
Narum, S. R. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv. Genet. 7, 783–787 (2006).
Google Scholar
Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).
Miller, M. P. Alleles in space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 96, 722–724 (2005).
Google Scholar
Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).
Google Scholar
Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).
Xia, X. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Mol. Biol. Evol. 35, 1550–1552 (2018).
Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
Source: Ecology - nature.com