in

Projected shifts in loggerhead sea turtle thermal habitat in the Northwest Atlantic Ocean due to climate change

  • 1.

    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. (2014).

  • 2.

    Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 3.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3(10), 919–925 (2013).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430(7002), 881–884 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Weatherdon, L. V., Magnan, A. K., Rogers, A. D., Sumaila, U. R. & Cheung, W. W. Observed and projected impacts of climate change on marine fisheries, aquaculture, coastal tourism, and human health: an update. Front. Mar. Sci. 3, 48 (2016).

    Article 

    Google Scholar 

  • 6.

    Mawdsley, J. R., O’Malley, R. & Ojima, D. S. A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv. Biol. 23(5), 1080–1089 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Cañadas, A. & Hammond, P. S. Abundance and habitat preferences of the short-beaked common dolphin Delphinus delphis in the southwestern Mediterranean: Implications for conservation. Endanger. Species Res. 4(3), 309–331 (2008).

    Article 

    Google Scholar 

  • 8.

    Franco, A. M., Catry, I., Sutherland, W. J. & Palmeirim, J. M. Do different habitat preference survey methods produce the same conservation recommendations for lesser kestrels?. Anim. Conserv. 7(3), 291–300 (2004).

    Article 

    Google Scholar 

  • 9.

    Spotila, J. R., Reina, R. D., Steyermark, A. C., Plotkin, P. T. & Paladino, F. V. Pacific leatherback turtles face extinction. Nature 405(6786), 529–530 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Wallace, B. P. et al. Impacts of fisheries bycatch on marine turtle populations worldwide: Toward conservation and research priorities. Ecosphere 4(3), 1–49 (2013).

    Article 

    Google Scholar 

  • 11.

    Dunn, D. C., Boustany, A. M. & Halpin, P. N. Spatio-temporal management of fisheries to reduce by-catch and increase fishing selectivity. Fish Fish. 12(1), 110–119 (2011).

    Article 

    Google Scholar 

  • 12.

    Senko, J., White, E. R., Heppell, S. S. & Gerber, L. R. Comparing bycatch mitigation strategies for vulnerable marine megafauna. Anim. Conserv. 17(1), 5–18 (2014).

    Article 

    Google Scholar 

  • 13.

    Howell, E. A., Kobayashi, D. R., Parker, D. M., Balazs, G. H. & Polovina, J. J. TurtleWatch: A tool to aid in the bycatch reduction of loggerhead turtles Caretta caretta in the Hawaii-based pelagic longline fishery. Endanger. Species Res. 5(2–3), 267–278 (2008).

    Article 

    Google Scholar 

  • 14.

    Swimmer, Y. et al. Sea turtle bycatch mitigation in US longline fisheries. Front. Mar. Sci. 4, 260 (2017).

    Article 

    Google Scholar 

  • 15.

    Saba, V. S., Stock, C. A., Spotila, J. R., Paladino, F. V. & Tomillo, P. S. Projected response of an endangered marine turtle population to climate change. Nat. Clim. Change 2(11), 814–820 (2012).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Santidrián Tomillo, P. et al. Global analysis of the effect of local climate on the hatchling output of leatherback turtles. Sci. Rep. 5, 16789 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Patel, S. H. et al. Climate impacts on sea turtle breeding phenology in Greece and associated foraging habitats in the wider Mediterranean region. PLoS ONE 11(6), e0157170 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Shoop, C. R. & Kenney, R. D. Seasonal distributions and abundances of loggerhead and leatherback sea turtles in waters of the northeastern United States. Herpetol. Monogr. 6, 43–67 (1992).

    Article 

    Google Scholar 

  • 19.

    Coles, W. & Musick, J. A. Satellite sea surface temperature analysis and correlation with sea turtle distribution off North Carolina. Copeia 2000(2), 551–554 (2000).

    Article 

    Google Scholar 

  • 20.

    Kleisner, K. M. et al. Marine species distribution shifts on the US Northeast Continental Shelf under continued ocean warming. Prog. Oceanogr. 153, 24–36 (2017).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21(2), 272–281 (2012).

    Article 

    Google Scholar 

  • 22.

    Stoneburner, D. L. Satellite telemetry of loggerhead sea turtle movement in the Georgia Bight. Copeia 1982, 400–408 (1982).

    Article 

    Google Scholar 

  • 23.

    Hart, K. M. & Hyrenbach, K. D. Satellite telemetry of marine megavertebrates: The coming of age of an experimental science. Endanger. Species Res. 10, 9–20 (2009).

    Article 

    Google Scholar 

  • 24.

    Hebblewhite, M. & Haydon, D. T. Distinguishing technology from biology: A critical review of the use of GPS telemetry data in ecology. Philos. Trans. R. Soc. B Biol. Sci. 365(1550), 2303–2312 (2010).

    Article 

    Google Scholar 

  • 25.

    Hays, G. C. & Hawkes, L. A. Satellite tracking sea turtles: Opportunities and challenges to address key questions. Front. Mar. Sci. 5, 432 (2018).

    Article 

    Google Scholar 

  • 26.

    Hawkes, L. A., Broderick, A. C., Coyne, M. S., Godfrey, M. H. & Godley, B. J. Only some like it hot—Quantifying the environmental niche of the loggerhead sea turtle. Divers. Distrib. 13(4), 447–457 (2007).

    Article 

    Google Scholar 

  • 27.

    Hazen, E. L. et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Chang. 3(3), 234–238 (2013).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 28.

    Roe, J. H. et al. Predicting bycatch hotspots for endangered leatherback turtles on longlines in the Pacific Ocean. Proc. R. Soc. B Biol. Sci. 281(1777), 20132559 (2014).

    Article 

    Google Scholar 

  • 29.

    Winton, M. V. et al. Estimating the distribution and relative density of satellite-tagged loggerhead sea turtles using geostatistical mixed effects models. Mar. Ecol. Prog. Ser. 586, 217–232 (2018).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Araújo, M. B. & Townsend, P. A. Uses and misuses of bioclimatic envelope modeling. Ecology 93(7), 1527–1539 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Gilman P, et al. National offshore wind strategy: facilitating the development of the offshore wind industry in the United States. National Renewable Energy Lab. (NREL), Golden, CO (United States) (2016).

  • 32.

    Northeast Fisheries Science Center (NEFSC) and Southeast Fisheries Science Center (SEFSC). Preliminary summer 2010 regional abundance estimate of loggerhead turtles (Caretta caretta) in northwestern Atlantic Ocean continental shelf waters. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 11–03; 33 p (2011).

  • 33.

    Ceriani, S. A., Weishampel, J. F., Ehrhart, L. M., Mansfield, K. L. & Wunder, M. B. Foraging and recruitment hotspot dynamics for the largest Atlantic loggerhead turtle rookery. Sci. Rep. 7(1), 1–3 (2017).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Fofonoff, N. P. The Gulf Stream. In Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel (eds. Warren, B. A., & Wunsch, C.) 112–139 (MIT Press, 1981) Cambridge, MA.

  • 35.

    Patel, S. H., Miller, S. & Smolowitz, R. J. Understanding impacts of the sea scallop fishery on loggerhead sea turtles through satellite tagging. Final report for 2015 Sea Scallop Research Set-Aside (RSA). NOAA grant: NA15 NMF 4540055. Coonamessett Farm Foundation, East Falmouth, MA (2016).

  • 36.

    Patel, S. H. et al. Loggerhead turtles are good ocean-observers in stratified mid-latitude regions. Estuar. Coast. Shelf Sci. 213, 128–136 (2018).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Crowe, L. M., Hatch, J. M., Patel, S. H., Smolowitz, R. J. & Haas, H. L. Riders on the storm: loggerhead sea turtles detect and respond to a major hurricane in the Northwest Atlantic Ocean. Mov. Ecol. 8(1), 1–3 (2020).

    Article 

    Google Scholar 

  • 38.

    Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. & Bell, B. M. TMB: Automatic differentiation and Laplace approximation. J. Stat. Softw. 70(5), 1–21 (2016).

    Article 

    Google Scholar 

  • 39.

    R Core Team. R: A language and environment for statistical computing (2017).

  • 40.

    Johnson, D. S., London, J. M., Lea, M.-A. & Durban, J. W. Continuous-time correlated random walk model for animal telemetry data. Ecology 89(5), 1208–1215 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    Albertsen, C. M., Whoriskey, K., Yurkowski, D., Nielsen, A. & Flemming, J. M. Fast fitting of non-Gaussian state-space models to animal movement data via Template Model Builder. Ecology 96(10), 2598–2604 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. American Statistical Association (2015).

  • 43.

    Turtle Expert Working Group (TEWG). An assessment of the loggerhead turtle population in the western North Atlantic Ocean. NOAA Tech. Mem. NMFS-SEFSC. 575(131), 744 (2009).

    Google Scholar 

  • 44.

    Clay, P. M. Management regions, statistical areas and fishing grounds: Criteria for dividing up the sea. J. Northwest Atl. Fish. Sci. 19, 103–126 (1996).

    Article 

    Google Scholar 

  • 45.

    Murray, K. T. & Orphanides, C. D. Estimating the risk of loggerhead turtle Caretta caretta bycatch in the US mid-Atlantic using fishery-independent and-dependent data. Mar. Ecol. Prog. Ser. 477, 259–270 (2013).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Saba, V. S. et al. Enhanced warming of the Northwest Atlantic Ocean under climate. J. Geophys. Res. Oceans 121(1), 118–132 (2016).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Amante, C. & Eakins, B. W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24 (2009).

  • 48.

    Reynolds, R. W. & Smith, T. M. Improved global sea surface temperature analyses using optimum interpolation. J. Clim. 7(6), 929–948 (1994).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Chamberlain, S. rerddap – General purpose client for ‘ERDDAP’ servers. R Package (2016).

  • 50.

    Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60(2), 255–265 (1973).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 51.

    Maunder, M. N. & Punt, A. E. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70(2–3), 141–159 (2004).

    Article 

    Google Scholar 

  • 52.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

    MATH 
    Book 

    Google Scholar 

  • 53.

    Benjamin, M. A., Rigby, R. A. & Stasinopoulos, D. M. Generalized autoregressive moving average models. J. Am. Stat. Assoc. 98(461), 214–223 (2003).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 54.

    Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4(43), 1686 (2019).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Tanaka, K. R., Torre, M. P., Saba, V. S., Stock, C. A. & Chen, Y. An ensemble high‐resolution projection of changes in the future habitat of American lobster and sea scallop in the Northeast US continental shelf. Diversity and Distributions (2020).

  • 56.

    McHenry, J., Welch, H., Lester, S. E. & Saba, V. Projecting marine species range shifts from only temperature can mask climate vulnerability. Glob. Change Biol. 25(12), 4208–4221 (2019).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Selden, R. L., Batt, R. D., Saba, V. S. & Pinsky, M. L. Diversity in thermal affinity among key piscivores buffers impacts of ocean warming on predator–prey interactions. Glob. Change Biol. 24(1), 117–131 (2018).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Griffin, D. B. et al. Foraging habitats and migration corridors utilized by a recovering subpopulation of adult female loggerhead sea turtles: Implications for conservation. Mar. Biol. 160(12), 3071–3086 (2013).

    Article 

    Google Scholar 

  • 59.

    Unal I. Defining an optimal cut-point value in ROC analysis: an alternative approach. Computational and mathematical methods in medicine (2017).

  • 60.

    Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21(20), 7881 (2005).

    Article 
    CAS 

    Google Scholar 

  • 61.

    Link, J. et al. The Northeast US continental shelf Energy Modeling and Analysis exercise (EMAX): Ecological network model development and basic ecosystem metrics. J. Mar. Syst. 74(1–2), 453–474 (2008).

    Article 

    Google Scholar 

  • 62.

    Bane, J. M. Jr., Brown, O. B., Evans, R. H. & Hamilton, P. Gulf Stream remote forcing of shelfbreak currents in the Mid-Atlantic Bight. Geophys. Res. Lett. 15(5), 405–407 (1988).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Hawkes, L. A. et al. Home on the range: spatial ecology of loggerhead turtles in Atlantic waters of the USA. Divers. Distrib. 17(4), 624–640 (2011).

    Article 

    Google Scholar 

  • 64.

    Mansfield, K. L., Saba, V. S., Keinath, J. A. & Musick, J. A. Satellite tracking reveals a dichotomy in migration strategies among juvenile loggerhead turtles in the Northwest Atlantic. Mar. Biol. 156(12), 2555–2570 (2009).

    Article 

    Google Scholar 

  • 65.

    Lentz, S. J. Seasonal warming of the Middle Atlantic Bight Cold Pool. J. Geophys. Res. Oceans 122(2), 941–954 (2017).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Iverson, A. R., Fujisaki, I., Lamont, M. M. & Hart, K. M. Loggerhead sea turtle (Caretta caretta) diving changes with productivity, behavioral mode, and sea surface temperature. PLoS ONE 14(8), e0220372 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Braun-McNeill, J., Sasso, C. R., Epperly, S. P. & Rivero, C. Feasibility of using sea surface temperature imagery to mitigate cheloniid sea turtle–fishery interactions off the coast of northeastern USA. Endanger. Species Res. 5(2–3), 257–266 (2008).

    Article 

    Google Scholar 

  • 68.

    Murray, K. T. Characteristics and magnitude of sea turtle bycatch in US mid-Atlantic gillnet gear. Endanger. Species Res. 8(3), 211–224 (2009).

    Article 

    Google Scholar 

  • 69.

    Murray, K. T. Interactions between sea turtles and dredge gear in the US sea scallop (Placopecten magellanicus) fishery, 2001–2008. Fish. Res. 107(1–3), 137–146 (2011).

    Article 

    Google Scholar 

  • 70.

    Witt, M. J., Hawkes, L. A., Godfrey, M. H., Godley, B. J. & Broderick, A. C. Predicting the impacts of climate change on a globally distributed species: The case of the loggerhead turtle. J. Exp. Biol. 213(6), 901–911 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103(2), 247–260 (2003).

    Article 

    Google Scholar 

  • 72.

    Saunders, M. A. & Lea, A. S. Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature 451(7178), 557–560 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    McClellan, C. M. & Read, A. J. Complexity and variation in loggerhead sea turtle life history. Biol. Lett. 3(6), 592–594 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    McClellan, C. M., Braun-McNeill, J., Avens, L., Wallace, B. P. & Read, A. J. Stable isotopes confirm a foraging dichotomy in juvenile loggerhead sea turtles. J. Exp. Mar. Biol. Ecol. 387(1–2), 44–51 (2010).

    Article 

    Google Scholar 

  • 75.

    Hatase, H. et al. Size-related differences in feeding habitat use of adult female loggerhead turtles Caretta caretta around Japan determined by stable isotope analyses and satellite telemetry. Mar. Ecol. Prog. Ser. 233, 273–281 (2002).

    ADS 
    Article 

    Google Scholar 

  • 76.

    Hatase, H., Omuta, K. & Tsukamoto, K. Bottom or midwater: Alternative foraging behaviours in adult female loggerhead sea turtles. J. Zool. 273(1), 46–55 (2007).

    Article 

    Google Scholar 

  • 77.

    Hawkes, L. A. et al. Phenotypically linked dichotomy in sea turtle foraging requires multiple conservation approaches. Curr. Biol. 16(10), 990–995 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    Reich, K. J. et al. Polymodal foraging in adult female loggerheads (Caretta caretta). Mar. Biol. 157(1), 113–121 (2010).

    Article 

    Google Scholar 

  • 79.

    Smolowitz, R. J., Patel, S. H., Haas, H. L. & Miller, S. A. Using a remotely operated vehicle (ROV) to observe loggerhead sea turtle (Caretta caretta) behavior on foraging grounds off the mid-Atlantic United States. J. Exp. Mar. Biol. Ecol. 471, 84–91 (2015).

    Article 

    Google Scholar 

  • 80.

    Patel, S. H., Dodge, K. L., Haas, H. L. & Smolowitz, R. J. Videography reveals in-water behavior of loggerhead turtles (Caretta caretta) at a foraging ground. Front. Mar. Sci. 3, 254 (2016).

    Article 

    Google Scholar 

  • 81.

    James, M. C., Andrea Ottensmeyer, C. & Myers, R. A. Identification of high-use habitat and threats to leatherback sea turtles in northern waters: new directions for conservation. Ecol. Lett. 8(2), 195–201 (2005).

    Article 

    Google Scholar 

  • 82.

    Dodge, K. L., Galuardi, B., Miller, T. J. & Lutcavage, M. E. Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean. PLoS ONE 9(3), e91726 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 83.

    Smolowitz, R., Milliken, H. O. & Weeks, M. Design, evolution, and assessment of a sea turtle deflector dredge for the US Northwest Atlantic Sea scallop fishery: Impacts on fish bycatch. North Am. J. Fish. Manag. 32(1), 65–76 (2012).

    Article 

    Google Scholar 

  • 84.

    Hart, D. R. & Chute, A. S. Essential fish habitat source document: Sea scallop, Placopecten magellanicus, life history and habitat characteristics. NOAA Tech. Mem. NMFS NE 189, 21 (2004).

    Google Scholar 

  • 85.

    Rheuban, J. E., Doney, S. C., Cooley, S. R. & Hart, D. R. Projected impacts of future climate change, ocean acidification, and management on the US Atlantic sea scallop (Placopecten magellanicus) fishery. PLoS ONE 13(9), e0203536 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 86.

    Framework Adjustment 23 to the Scallop Fisheries Management Plan. NOAA-NMFS-2011-0255 (2012).

  • 87.

    Murray, K. T. Estimated magnitude of sea turtle interactions and mortality in US Bottom Trawl Gear, 2014–2018 (2020).

  • 88.

    Houghton, J. D., Doyle, T. K., Wilson, M. W., Davenport, J. & Hays, G. C. Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment. Ecology 87(8), 1967–1972 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 89.

    Nelson, D. A. Life history and environmental requirements of loggerhead turtles. Fish and Wildlife Service, US Department of the Interior (1988).


  • Source: Ecology - nature.com

    Spencer Compton, Karna Morey, Tara Venkatadri, and Lily Zhang named 2021-22 Goldwater Scholars

    Navigating beneath the Arctic ice