Benelli, G. Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microbial Technol 95, 58–68 (2016).
Google Scholar
Dash, A. P., Valecha, N. & Anvikar, A. R. Malaria in India: challenges and opportunities. J. Biosci 33(4), 583–928 (2008).
Google Scholar
World Malaria Report: Geneva: World Health Organization. Accessed 18th July 2017.
Olotu, A. et al. Seven-year efficacy of RTS, S/AS01 malaria vaccine among young African children. N. Engl. J. Med 374, 2519–2529 (2016).
Google Scholar
Solomona, S., Plattnerb, G. K., Knuttic, R. & Friedlingsteind, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. U.S.A. 106, 1704–1709 (2009).
Google Scholar
Shaalan, E. A. S., Canyonb, D., Younesc, M. W. F., Abdel-Wahaba, H. & Mansoura, A. H. A review of botanical phytochemicals with mosquitocidal potential. Environ. Int. 3, 1149–1166 (2005).
Google Scholar
Sundukov, Y. N. First record of the ground beetle Trechoblemus postilenatus (Coleoptera, Carabidae) in Primorskii krai. Far East Entomol. 165, 16 (2006).
Soni, N. & Prakash, S. Green nanoparticles for mosquito control. Sci. World J. 214, 1–6 (2014).
Google Scholar
Abinaya, M. et al. Structural characterization of Bacillus licheniformis Dahb1 exopolysaccharide antimicrobial potential and larvicidal activity on malaria and Zika virus mosquito vectors. Environ. Sci. Pollut. Res 25, 5 (2018).
Google Scholar
Shawkey, A. M., Rabeh, M. A., Abdulall, A. K. & Abdellatif, A. O. Green nanotechnology: anticancer activity of silver nanoparticles using Citrullus colocynthis aqueous extracts. Adv. Life Sci. Technol. 13, 60–70 (2013).
Thomas, S., Ravishankaran, S. & Johnson Amala Justin, N. A. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar. J. 16(11), 1–7 (2017).
Murugan, K. et al. Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiol. Mol. Plant Pathol. 101, 202–213 (2018).
Google Scholar
Kalimuthu, K., Panneerselvam, C., Murugan, K. & Hwang, J. S. Green synthesis of silver nanoparticles using Cadaba indica Lam leaf extract and its larvicidal and pupicidal activity against Anopheles stephensi and Culex quinquefasciatus. J. Entomol. Acarol. Res. 45(2), e11 (2013).
Google Scholar
Patra, A., Raja, A. S. M. & Shah, N. Current developments in (Malaria) mosquito protective methods: a review paper. Int. J. Mosquito Res. 6(1), 38–45 (2019).
Wahab, R., Ahmad, J. & Ahmad, N. Application of multi-dimensional (0D, 1D, 2D) nanostructures for the cytological evaluation of cancer cells and their bacterial response. Colloids Surf. A Physicochem. Eng. Asp. 583, 123953 (2019).
Google Scholar
Bhadra, J., Alkareem, A. & Al-Thani, N. A review of advances in the preparation and application of polyaniline based thermoset blends and composites. J. Polym. Res. 27(5), 1–20 (2020).
Google Scholar
Jaganathana, A. et al. (+16), Earthworm-mediated synthesis of silver nanoparticles: a potent toolagainst hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol. Int. 65(2016), 276–284 (2016).
Google Scholar
Abdelkhalek, A. & Al-Askar, A. A. Green synthesized ZnO nanoparticles mediated by Mentha spicata extract induce plant systemic resistance against Tobacco mosaic virus. Appl. Sci. 10, 15 (2020).
Google Scholar
Ishwarya, R. et al. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J. Photochem. Photobiol. 2018(178), 249–258 (2018).
Google Scholar
Murugan, K. et al. Nano-insecticides for the control of human and crop pests. In Short Views on Insect Genomics and Proteomics. Entomology in Focus (eds Raman, C. et al.) 229–251 (Springer, 2016).
Bauer, A. W., Kirby, W. M., Sherris, J. C. & Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45(4), 493–496 (1966).
Google Scholar
Anitha, J. et al. Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol. Int. 65, 276–284 (2016).
Google Scholar
Wahab, R., Khan, F. & Al-Khedhairy, A. A. Hematite iron oxide nanoparticles: apoptosis of myoblast cancer cells and their arithmetical assessment. RSC Adv. 8(44), 24750–24759 (2018).
Google Scholar
Ashley, E. A. et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371, 411–423 (2014).
Google Scholar
Rajan, R., Chandran, K., Harper, S. L., Yun, S. I. & Kalaichelvan, P. T. Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind. Crop Prod. 70, 356–373 (2015).
Google Scholar
Suresh, U. et al. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 114, 1551–1562 (2015).
Google Scholar
Natarajan, K., Selvaraj, S. & Murty, V. R. Microbial production of silver nanoparticle. Digest J. Nanomat. Biostruct. 5, 135–140 (2010).
Song, Y. J., Jang, H. K. & Kim, S. B. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extract. Process Biochem. 44, 1133–1138 (2009).
Google Scholar
Krishnan, R. & Maru, G. B. Isolation and analysis of polymeric polyphenol fractions from black tea. Food Chem. 94, 331–340 (2006).
Google Scholar
Shankar, S., Rai, A., Ahmad, A. & Sastry, M. Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275, 496–550 (2004).
Google Scholar
Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A. & Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 22, 577–583 (2006).
Google Scholar
Benelli, G. Plant-synthesized nanoparticles: an eco-friendly tool against mosquito vectors? In Nanoparticles in the Fight Against Parasites Parasitology Research Monographs (ed. Mehlhorn, H.) 155–172 (Springer, 2015).
Sadraei, R. A simple method for preparation of nano-sized ZnO. Res. Rev. J. Chem. 5(2), 45–49 (2016).
Google Scholar
Priyadarshini, K. A. et al. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res. 111(3), 997–1006 (2012).
Google Scholar
Satheeshkumar, K. & Kathireswari, P. Biological synthesis of Silver nanoparticles (Ag-NPS) by Lawsonia inermis (Henna) plant aqueous extract and its antimicrobial activity against human pathogens. Int. J. Curr. Microbiol. Appl. Sci. 5, 926–937 (2016).
Nareshkumar, G. et al. Electron channeling contrast imaging for III-nitride thin film structures. Mat. Sci. Semicon. Proc. 2016(47), 44–50 (2016).
Google Scholar
Gandhi, S. & Madhusudhan, N. Retrieval of exoplanet emission spectra with HyDRA. Mon. Not. R. Astron. Soc. 47, 1–20 (2017).
Murugan, K. et al. Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitol. Res. 114, 3657–3664 (2015).
Google Scholar
Dinesh, D. et al. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?. Parasitol. Res. 114, 1519–1529 (2015).
Google Scholar
Pati, F. et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5, 3935 (2014).
Google Scholar
Baxter, J. B. & Aydil, E. S. Nanowire based dye sensitized solar cells. Appl. Phys. Lett. 86, 53114 (2005).
Google Scholar
Reddy, K. M. et al. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90(21), 213902–213903 (2007).
Google Scholar
Chwalibog, A. et al. Visualization of interaction between inorganic nano-particles and bacteria or fungi. Int. J. Nanomedicine. 2010(5), 1085–1094 (2010).
Google Scholar
Saha, S., Dhanasekaran, D., Chandraleka, S. & Panneerselvam, C. A Synthesis, characterization and antimicrobial activity of cobalt metal complex against multi drug resistant bacterial and fungal pathogen Facta universitatis series. Phys. Chem. Technol. 7(1), 73–80 (2009).
Google Scholar
Vivek, M., Kumar, P. S., Steffi, S. & Sudha, S. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects Avicenna. J. Med. Biotechnol. 3(3), 143 (2011).
Google Scholar
Chobu, M., Nkwengulila, G., Mahande, A. M., Mwangonde, B. J. & Kweka, E. J. Direct and indirect effect of predators on Anopheles gambiae sensu stricto. Acta Trop. 142, 131–137 (2015).
Google Scholar
Murugan, K. et al. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7). Parasitol. Res. 115, 1085–1096 (2016).
Google Scholar
Subramaniam, J. et al. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach?. Environ. Sci. Pollut. Res. Int. 22(24), 20067–20083 (2015).
Google Scholar
Murugan, K. et al. Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol. Res. 114, 3601–3610 (2015).
Google Scholar
Mahesh Kumar, P. et al. Mosquitocidal activity of Solanum xanthocarpum fruit extract and copepod Mesocyclops thermocyclopoides for the control of dengue vector Aedes aegypti. Parasitol. Res. 111, 609–618 (2012).
Google Scholar
Khooshe-Bast, Z., Sahebzadeh, N., Ghaffari-Moghaddam, M. & Mirshekar, A. Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). Acta Agric Slov. 107(2), 299 (2016).
Google Scholar
Ahmad, J., Wahab, R., Siddiqui, M. A., Saquib, Q. & Al-Khedhairy, A. A. Cytotoxicity and cell death induced by engineered nanostructures (quantum dots and nanoparticles) in human cell lines. J. Biol. Inorg. Chem. 25(2), 325–338 (2020).
Google Scholar
Wahab, R. et al. Gold quantum dots impair the tumorigenic potential of glioma stem-like cells via β-catenin downregulation in vitro. Int. J. Nanomed. 14, 1131–1148 (2019).
Google Scholar
Wahab, R., Saquib, Q. & Faisal, M. Zinc oxide nanostructures: a motivated dynamism against cancer cells. Process Biochem. 98(June), 83–92 (2020).
Google Scholar
Wahab, R. et al. Microwave plasma-assisted silicon nanoparticles: cytotoxic, molecular, and numerical responses against cancer cells. RSC Adv. 9(23), 13336–13347 (2019).
Google Scholar
Anitha, J., Selvakumar, R. & Murugan, K. Chitosan capped ZnO nanoparticles with cell specific apoptosis induction through P53 activation and G2/M arrest in breast cancer cells—In vitro approaches. Int. J. Biol. Macromol. 136, 686–696 (2019).
Google Scholar
Wahab, R. et al. Zinc oxide quantum dots: Multifunctional candidates for arresting C2C12 cancer cells and their role towards caspase 3 and 7 genes. RSC Adv. 6(31), 26111–26120 (2016).
Google Scholar
Liu, J. & Wang, Z. Increased oxidative stress a selective anticancer therapy. Oxid. Med. Cell. Longev. 2015, 294303 (2015).
Google Scholar
Droese, S. & Brandt, U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv. Exp. Med. Biol. 748, 145–169 (2012).
Google Scholar
Gupta, S. C. et al. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid. Redox Signal. 16, 1295–1322 (2012).
Google Scholar
Source: Ecology - nature.com