in

Patch selection by bumble bees navigating discontinuous landscapes

  • 1.

    Marden, J. H. & Waddington, K. D. Floral choices by honeybees in relation to the relative distances to flowers. Physiol. Entomol. 6, 431–435 (1981).

    Article 

    Google Scholar 

  • 2.

    Waddington, K. D., Allen, T. & Heinrich, B. Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Anim. Behav. 29, 779–784 (1981).

    Article 

    Google Scholar 

  • 3.

    Bauer, A. A., Clayton, M. K. & Brunet, J. Floral traits influencing plant attractiveness to three bee species: consequences for plant reproductive success. Am. J. Bot. 104, 772–781 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 4.

    Bradshaw, H. D. & Schemske, D. W. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426, 176–178 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Klahre, U. et al. Pollinator choice in petunia depends on two major genetic loci for floral scent production. Curr. Biol. 21, 730–739 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Muth, F., Papaj, D. R. & Leonard, A. S. Bees remember flowers for more than one reason: pollen mediates associative learning. Anim. Behav. 111, 93–100 (2016).

    Article 

    Google Scholar 

  • 7.

    Brunet, J., Thairu, M. W., Henss, J. M., Link, R. I. & Kluever, J. A. The effects of flower, floral display, and reward sizes on bumblebee foraging behavior when pollen is the reward and plants are dichogamous. Int. J. Plant Sci. 176, 811–819 (2015).

    Article 

    Google Scholar 

  • 8.

    Nicholls, E. & De Ibarra, N. H. Bees associate colour cues with differences in pollen rewards. J. Exp. Biol. 217, 2783–2788 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Thairu, M. W. & Brunet, J. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea. Ann. Bot. 115, 971–979 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Ishii, H. S. Floral display size influences subsequent plant choice by bumble bees. Funct. Ecol. 20, 233–238 (2006).

    Article 

    Google Scholar 

  • 11.

    Mitchell, R. J., Karron, J. D., Holmquist, K. G. & Bell, J. M. The influence of Mimulus ringens floral display size on pollinator visitation patterns. Funct. Ecol. 18, 116–124 (2004).

    Article 

    Google Scholar 

  • 12.

    Makino, T. T. & Sakai, S. Experience changes pollinator responses to floral display size: from size-based to reward-based foraging. Funct. Ecol. 21, 854–863 (2007).

    Article 

    Google Scholar 

  • 13.

    Osborne, J. L. et al. A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J. Appl. Ecol. 36, 519–533 (1999).

    Article 

    Google Scholar 

  • 14.

    Osborne, J. L. & Williams, I. H. Site constancy of bumble bees in an experimentally patchy habitat. Agric. Ecosyst. Environ. 83, 129–141 (2001).

    Article 

    Google Scholar 

  • 15.

    Saville, N. M., Dramstad, W. E., Fry, G. L. A. & Corbet, S. A. Bumblebee movement in a fragmented agricultural landscape. Agric. Ecosyst. Environ. 61, 145–154 (1997).

    Article 

    Google Scholar 

  • 16.

    Ogilvie, J. E. & Thomson, J. D. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species. Ecology 97, 1442–1451 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Cresswell, J. E. & Osborne, J. L. The effect of patch size and separation on bumblebbe foraging in oilseed rape: implications for gene flow. J. Appl. Ecol. 41, 539–546 (2004).

    Article 

    Google Scholar 

  • 18.

    Ohashi, K. & Thomson, J. D. Trapline foraging by pollinators: its ontogeny, economics and possible consequences for plants. Ann. Bot. 103, 1365–1378 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Saleh, N. & Chittka, L. Traplining in bumblebees (Bombus impatiens): a foraging strategy’s ontogeny and the importance of spatial reference memory in short-range foraging. Oecologia 151, 719–730 (2007).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Woodgate, J. L., Makinson, J. C., Lim, K. S., Reynolds, A. M. & Chittka, L. Continuous radar tracking illustrates the development of multi-destination routes of bumblebees. Sci. Rep. 7, 1–15 (2017).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Lihoreau, M., Chittka, L. & Raine, N. E. Trade-off between travel distance and prioritization of high-reward sites in traplining bumblebees. Funct. Ecol. 25, 1284–1292 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Lihoreau, M., Chittka, L. & Raine, N. E. Travel optimization by foraging bumblebees through readjustments of traplines after discovery of new feeding locations. Am. Nat. 176, 744–757 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Lihoreau, M., Chittka, L., Le Comber, S. C. & Raine, N. E. Bees do not use nearest-neighbour rules for optimization of multi-location routes. Biol. Lett. 8, 13–16 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Minahan, D. F. & Brunet, J. Strong interspecific differences in foraging activity observed between honey bees and bumble bees using miniaturized radio frequency identification (RFID). Front. Ecol. Evol. 6, 156 (2018).

    Article 

    Google Scholar 

  • 25.

    Brunet, J., Zhao, Y. & Clayton, M. K. Linking the foraging behavior of three bee species to pollen dispersal and gene flow. PLoS ONE 14, e0212561 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Reynolds, A. M., Lihoreau, M. & Chittka, L. A simple iterative model accurately captures complex trapline formation by bumblebees across spatial scales and flower arrangements. PLoS Comput. Biol. 9, e1002938 (2013).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Marschall, E. A., Chesson, P. L. & Stein, R. A. Foraging in a patchy environment: prey-encounter rate and residence time distributions. Anim. Behav. 37, 444–454 (1989).

    Article 

    Google Scholar 

  • 28.

    Pyke, G. H. Optimal foraging theory : a critical review. Ann. Rev. Ecol. Syst. 15, 523–575 (1984).

    Article 

    Google Scholar 

  • 29.

    Rands, S. A. Landscape fragmentation and pollinator movement within agricultural environments: a modelling framework for exploring foraging and movement ecology. PeerJ 2, e269 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Lima, S. L. & Zollner, P. A. Towards a behavioral ecology of ecological landscapes. Trends Ecol. Evol. 11, 131–135 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Brunet, J. A conceptual framework that links pollinator foraging behavior to gene flow. In Proceedings for the 2018 Winter Seed Conference 63–67 (2018).

  • 32.

    Macarthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).

    Article 

    Google Scholar 

  • 33.

    Pyke, G. H. Understanding movements of organisms: it’s time to abandon the Lévy foraging hypothesis. Methods Ecol. Evol. 6, 1–16 (2015).

    Article 

    Google Scholar 

  • 34.

    Heinrich, B. ‘Majoring’ and ‘minoring’ by foraging bumblebees, Bombus vagans: an experimental analysis. Ecology 60, 245–255 (1979).

    Article 

    Google Scholar 

  • 35.

    Somme, L. et al. Pollen and nectar quality drive the major and minor floral choices of bumble bees. Apidologie 46, 92–106 (2015).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Levey, D. J., Bolker, B. M., Tewksbury, J. J., Sargent, S. & Haddad, N. M. Effects of landscape corridors on seed dispersal by birds. Science 309, 146–148 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Levey, D. J., Tewksbury, J. J. & Bolker, B. M. Modelling long-distance seed dispersal in heterogeneous landscapes. J. Ecol. 96, 599–608 (2008).

    Article 

    Google Scholar 

  • 38.

    Pasquet, R. S. et al. Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc. Natl. Acad. Sci. U. S. A. 105, 13456–13461 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Smith, K. & Spangenberg, G. Considerations for managing agricultural co-existence between transgenic and non-transgenic cultivars of outcrossing perennial forage plants in dairy pastures. Agronomy 6, 59–68 (2016).

    Article 

    Google Scholar 

  • 40.

    Ellstrand, N. C. et al. Introgression of crop alleles into wild or weedy populations. Annu. Rev. Ecol. Evol. Syst. 44, 325–345 (2013).

    Article 

    Google Scholar 

  • 41.

    Gupta, R. M. & Musunuru, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J. Clin. Invest. 124, 4154–4161 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Esch, H. E. & Burns, J. E. Distance estimation by foraging honeybees. J. Exp. Biol. 199, 155–162 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Srinivasan, M. V., Zhang, S., Altwein, M. & Tautz, J. Honeybee navigation: nature and calibration of the ‘odometer’. Science (80-.) 287, 851–853 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 44.

    Collett, M. & Collett, T. S. How do insects use path integration for their navigation?. Biol. Cybern. 83, 245–259 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23, R789–R800 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Chittka, L., Geiger, K. & Kunze, J. The influences of landmarks on distance estimation of honey bees. Anim. Behav. 50, 23–31 (1995).

    Article 

    Google Scholar 

  • 47.

    Srinivasan, M. V., Lehrer, M. & Horridge, G. A. Visual figure-ground discrimination in the honeybee: the role of motion parallax at boundaries. Proc. R. Soc. B Biol. Sci. 238, 331–350 (1990).

    ADS 

    Google Scholar 

  • 48.

    Lehrer, M. Looking all around: honeybees use different cues in different eye regions. J. Exp. Biol. 201, 3275–3292 (1998).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Goulson, D. Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspect. Plant Ecol. Evol. Syst. 2, 185–209 (1999).

    Article 

    Google Scholar 

  • 50.

    Ohashi, K., Thomson, J. D. & D’Souza, D. Trapline foraging by bumble bees: IV. Optimization of route geometry in the absence of competition. Behav. Ecol. 18, 1–11 (2007).

    Article 

    Google Scholar 

  • 51.

    Comba, L. Patch use by bumblebees (hymenoptera apidae): temperature, wind, flower density and traplining. Ethol. Ecol. Evol. 11, 243–264 (1999).

    Article 

    Google Scholar 

  • 52.

    Ohashi, K., Leslie, A. & Thomson, J. D. Trapline foraging by bumble bees: V. Effects of experience and priority on competitive performance. Behav. Ecol. 19, 936–948 (2008).

    Article 

    Google Scholar 

  • 53.

    Klein, S., Pasquaretta, C., Barron, A. B., Devaud, J. M. & Lihoreau, M. Inter-individual variability in the foraging behaviour of traplining bumblebees. Sci. Rep. 7, 1–12 (2017).

    Article 
    CAS 

    Google Scholar 

  • 54.

    Chittka, L. Bee cognition. Curr. Biol. 27, R1049–R1053 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Ohashi, K. & Yahara, T. Visit larger displays but probe proportionally fewer flowers: counterintuitive behaviour of nectar-collecting bumble bees achieves an ideal free distribution. Funct. Ecol. 16, 492–503 (2002).

    Article 

    Google Scholar 

  • 56.

    Brunet, J. & Stewart, C. M. Impact of bee species and plant density on alfalfa pollination and potential for gene flow. Psyche A J. Entomol. https://doi.org/10.1155/2010/201858 (2010).

    Article 

    Google Scholar 

  • 57.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    Google Scholar 

  • 58.

    Weisberg, S. Applied Linear Regression (Wiley, 2013). https://doi.org/10.2307/3150981.

    Book 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    To advance climate action, MIT seeks partnerships beyond industry

    Top collegiate inventors awarded 2021 Lemelson-MIT Student Prize