in

The Asian plethodontid salamander preserves historical genetic imprints of recent northern expansion

  • 1.

    Hewitt, G. M. Quaternary phylogeography: the roots of hybrid zones. Genetica 139, 617–638 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Gillespie, R. G. & Roderick, G. K. Evolution: geology and climate drive diversification. Nature 509, 297–298 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Hewitt, G. M. The genetic legacy of the quaternary ice ages. Nature 405, 907–913 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Gómez, A. & Lunt, D. H. Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography of Southern European Refugia (eds Weiss, S. & Ferrand, N.) 155–188 (Springer, 2007).

    Google Scholar 

  • 5.

    Abellán, P. & Svenning, J. C. Refugia within refugia—patterns in endemism and genetic divergence are linked to Late Quaternary climate stability in the Iberian Peninsula. Biol. J. Linn. Soc. 113, 13–28 (2014).

    Article 

    Google Scholar 

  • 6.

    Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, 2000).

    Google Scholar 

  • 7.

    Juan, C., Emerson, B. C., Oromí, P. & Hewitt, G. M. Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends Ecol. Evol. 15, 104–109 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Chung, M. Y., López-Pujol, J. & Chung, M. G. The role of the Baekdudaegan (Korean Peninsula) as a major glacial refugium for plant species: a priority for conservation. Biol. Conserv. 206, 236–248 (2017).

    Article 

    Google Scholar 

  • 9.

    Chung, M. Y. et al. The Korean baekdudaegan mountains: a glacial refugium and a biodiversity hotspot that needs to be conserved. Front. Genet. 9, 489 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    AmphibiaWeb. https://amphibiaweb.org/. (Accessed: 15th July 2020).

  • 11.

    Borzée, A. & Min, M.-S. Disentangling the impacts of speciation, sympatry and the island effect on the morphology of seven Hynobius sp. salamanders. Animals 11, 187 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Baek, H.-J., Lee, M.-Y., Lee, H. & Min, M.-S. Mitochondrial DNA data unveil highly divergent populations within the Genus Hynobius (Caudata: Hynobiidae) in South Korea. Mol. Cells 31, 105–112 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Suk, H. Y. et al. Phylogenetic structure and ancestry of Korean clawed salamander, Onychodactylus koreanus (Caudata: Hynobiidae). Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 29, 650–658 (2018).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Min, M.-S. et al. Discovery of the first Asian plethodontid salamander. Nature 435, 87–90 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Wiens, J. J., Engstrom, T. N. & Chippindale, P. T. Rapid diversification, incomplete isolation, and the “speciation clock” in North American salamanders (genus Plethodon): testing the hybrid swarm hypothesis of rapid radiation. Evolution 60, 2585–2603 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Kozak, K. H., Mendyk, R. W. & Wiens, J. J. Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in coexisting clades of North American salamanders. Evolution 63, 1769–1784 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Zhang, P. & Wake, D. B. Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 53, 492–508 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Vieites, D. R., Román, S. N., Wake, M. H. & Wake, D. B. A multigenic perspective on phylogenetic relationships in the largest family of salamanders, the Plethodontidae. Mol. Phylogenet. Evol. 59, 623–635 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Shen, X. X. et al. Enlarged multilocus data set provides surprisingly younger time of origin for the Plethodontidae, the largest family of salamanders. Syst. Biol. 65, 66–81 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Wake, D. B. Persistent plethodontid themes: species, phylogenies, and biogeography. Herpetologica 73, 242–251 (2017).

    Article 

    Google Scholar 

  • 21.

    Wake, D. B. The enigmatic history of the European, Asian and American plethodontid salamanders. Amphib-reptil 34, 323–336 (2013).

    Article 

    Google Scholar 

  • 22.

    Vieites, D. R., Min, M.-S. & Wake, D. B. Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc. Natl. Acad. Sci. U.S.A. 104, 19903–19907 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    IUCN SSC Amphibian Specialist Group. Karsenia koreana. The IUCN Red List of Threatened Species 2019. (2019). https://www.iucnredlist.org/species/61903/110101886. (Accessed: 15th July 2020).

  • 24.

    Borzée, A. et al. Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Sci. Rep. 9, 1–9 (2019).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Sessions, S. K. et al. Cytogenetic analysis of the Asian Plethodontid salamander, Karsenia koreana: evidence for karyotypic conservation, chromosome repatterning, and genome size evolution. Chromosom. Res. 16, 563–574 (2008).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Buckley, D., Wake, M. H. & Wake, D. B. Comparative skull osteology of Karsenia koreana (Amphibia, Caudata, Plethodontidae). J. Morphol. 271, 533–558 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Sever, D. M., Pinsoneault, A. D., Mackenzie, B. W., Siegel, D. S. & Staub, N. L. A description of the skin glands and cloacal morphology of the plethodontid salamander Karsenia koreana. Copeia 104, 816–823 (2016).

    Article 

    Google Scholar 

  • 28.

    Moon, K. Y. & Park, D. Report of Karsenia koreana eggs oviposited within a semi-natural terrarium constructed at natural habitat. Korean J. Herpetol. 7, 1–5 (2016).

    Google Scholar 

  • 29.

    Song, J.-Y. et al. Life history of a unique Asian plethodontid salamander, Karsenia koreana. Zool. Sci. 34, 122–128 (2017).

    Article 

    Google Scholar 

  • 30.

    Jung, J.-H., Lee, E.-J., Lee, W.-S. & Park, C.-D. Habitat suitability models of Korean crevice salamander (Karsenia koreana) at forested area in Daejeon metropolitan city, Republic of Korea. J. For. Res. 24, 349–355 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology Vol. 132 (eds Misener, S. & Krawetz, S. A.) 365–386 (Humana Press, 2000).

    Google Scholar 

  • 32.

    Su, X. Z., Wu, Y., Sifri, C. D. & Wellems, T. E. Reduced extension temperatures required for PCR amplification of extremely A+T-rich DNA. Nucleic Acids Res. 24, 1574–1575 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Smit, A. F. A., Hubley, R. & Green, P. RepeatModeler Open-1.0. 2008–2015. (2014). http://www.repeatmasker.org.

  • 34.

    Stieneke, D. L. & Eujayl, I. L. Imperfect SSR Finder Version 1.0. United States Department of Agriculture. (2019). https://data.nal.usda.gov/dataset/imperfect-ssr-finder.

  • 35.

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).

    Book 

    Google Scholar 

  • 39.

    Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Excoffier, L., Smouse, P. & Quattro, J. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Bandelt, H.-J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Wake, D. B. Taxonomy of salamanders of the family Plethodontidae (Amphibia: Caudata). Zootaxa 3484, 75–82 (2012).

    Article 

    Google Scholar 

  • 44.

    Lanfear, R., Calcott, B., Ho, S. Y. & Guidon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environment Workshop (GCE) 1–8 (2010).

  • 48.

    Ronquist, F. & Huelsenbeck, J. P. Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. In Some Mathematical Questions in Biology: DNA Sequence Analysis (ed. Miura, R. M.) 57–86 (American Mathematical Society, 1986).

    Google Scholar 

  • 50.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Brown, R. P. & Yang, Z. Rate variation and estimation of divergence times using strict and relaxed clocks. BMC Evol. Biol. 11, 271 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–860 (2006).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 54.

    Russel, P. M., Brewer, B. J., Klaere, S. & Bouckaert, R. Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol. 68, 219–233 (2018).

    Article 

    Google Scholar 

  • 55.

    Heled, J. & Drummond, A. J. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8, 289 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 56.

    Hasegawa, M., Kishino, H. & Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2013). http://www.r-project.org/.

  • 58.

    Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Fu, Y.-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–9125 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    van Oosterhout, C., Hutchinson, B., Wills, D. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

    Article 
    CAS 

    Google Scholar 

  • 61.

    Rousset, F. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 62.

    Peakall, R. O. D. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).

    Article 

    Google Scholar 

  • 63.

    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1997).

    Article 

    Google Scholar 

  • 64.

    Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Harley, E. H. AGARst: a programme for calculating allele frequencies, Gst and Rst from microsatellite data, version 2. University of Cape Town, Cape Town, South Africa. (2001).

  • 66.

    Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395–420 (1965).

    Article 

    Google Scholar 

  • 67.

    Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Goudet, J. Fstat (ver. 2.9.4), a program to estimate and test population genetics parameters. (2003). https://www2.unil.ch/popgen/softwares/fstat.htm

  • 69.

    Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Manni, F., Guérard, E. & Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm”. Hum. Biol. 76, 173–190 (2004).

  • 71.

    Monmonier, M. Maximum-difference barriers: an alternative numerical regionalization method. Geogr. Anal. 3, 245–261 (1973).

    Google Scholar 

  • 72.

    Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153–170 (1983).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Dieringer, D. & Schlötterer, C. Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167–169 (2003).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Kitada, S., Nakamichi, R. & Kishino, H. The empirical Bayes estimators of fine-scale population structure in high gene flow species. Mol. Ecol. Resour. 17, 1210–1222 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Earl, D. A. & Vonholdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).

    Article 

    Google Scholar 

  • 77.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    Cornuet, J.-M. et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Penny, D. Relativity for molecular clocks. Nature 436, 183–184 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Dakin, E. E. & Avise, J. C. Microsatellite null alleles in parentage analysis. Heredity 93, 504–509 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 81.

    Oromi, N. et al. Genetic structure of lake and stream populations in a Pyrenean amphibian (Calotriton asper) reveals evolutionary significant units associated with paedomorphosis. J. Zool. Syst. Evol. Res. 57, 418–430 (2019).

    Article 

    Google Scholar 

  • 82.

    Janes, J. K. et al. The K = 2 conundrum. Mol. Ecol. 26, 3594–3602 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 83.

    Chiari, Y. et al. Phylogeography of Sardinian cave salamanders (genus Hydromantes) is mainly determined by geomorphology. PLoS ONE 7, e32332 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Cimmaruta, R., Lucente, D. & Nascetti, G. Persistence, isolation and diversification of a naturally fragmented species in local refugia: the case of Hydromantes strinatii. PLoS ONE 10, e0131298 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 85.

    Kuchta, S. R., Haughey, M., Wynn, A. H., Jacobs, J. F. & Highton, R. Ancient river systems and phylogeographical structure in the spring salamander, Gyrinophilus porphyriticus. J. Biogeogr. 43, 639–652 (2016).

    Article 

    Google Scholar 

  • 86.

    Pan, T. et al. Long-term sky islands generate highly divergent lineages of a narrowly distributed stream salamander (Pachyhynobius shangchengensis) in mid-latitude mountains of East Asia. BMC Evol. Biol. 19, 1–15 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Suk, H. Y. et al. Genetic and phylogenetic structure of Hynobius quelpaertensis, an endangered endemic salamander species on the Korean Peninsula. Genes Genom. 42, 165–178 (2020).

    CAS 
    Article 

    Google Scholar 

  • 88.

    Cameron, A. C., Anderson, J. J. & Page, R. B. Assessment of intra and interregional genetic variation in the Eastern Red-backed Salamander, Plethodon cinereus, via analysis of novel microsatellite markers. PLoS ONE 12, e0186866 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 89.

    Yoshikawa, N. & Nagata, N. Eighteen SSR Markers for the Japanese clawed salamander, Onychodactylus japonicus, and cross-amplification in its congeners. Curr. Herpetol. 36, 153–158 (2017).

  • 90.

    Moritz, C. Applications of mitochondrial DNA analysis in conservation: a critical review. Mol. Ecol. 3, 401–411 (1994).

    CAS 
    Article 

    Google Scholar 

  • 91.

    Estoup, A., Jarne, P. & Cornuet, J. M. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol. Ecol. 11, 1591–1604 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 92.

    Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 93.

    Karl, S. A., Toonen, R. J., Grant, W. S. & Bowen, B. W. Common misconceptions in molecular ecology: echoes of the modern synthesis. Mol. Ecol. 21, 4171–4189 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 94.

    Cook, B. D., Bunn, S. E. & Hughes, J. M. Molecular genetic and stable isotope signatures reveal complementary patterns of population connectivity in the regionally vulnerable southern pygmy perch (Nannoperca australis). Biol. Conserv. 138, 60–72 (2007).

    Article 

    Google Scholar 

  • 95.

    Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276 (1996).

    Article 

    Google Scholar 

  • 96.

    Avise, J. C., Walker, D. & Johns, G. C. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 1707–1712 (1998).

    CAS 
    Article 

    Google Scholar 

  • 97.

    Alexandrino, J., Froufe, E., Arntzen, J. W. & Ferrand, N. Genetic subdivision, glacial refugia and postglacial recolonization in the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela). Mol. Ecol. 9, 771–781 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 98.

    Alexandrino, J., Arntzen, J. W. & Ferrand, N. Nested clade analysis and the genetic evidence for population expansion in the phylogeography of the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela). Heredity 88, 66–74 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 99.

    Rovito, S. M. Lineage divergence and speciation in the Web-toed Salamanders (Plethodontidae: Hydromantes) of the Sierra Nevada, California . Mol. Ecol. 19, 4554–4571 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 100.

    Shafer, A. B. A., Cullingham, C. I., Côté, S. D. & Coltman, D. W. Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Mol. Ecol. 19, 4589–4621 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 101.

    Zhang, R.-Z. Geological events and mammalian distribution in China. Acta Zool. Sin. 48, 141–153 (2002).

    Google Scholar 

  • 102.

    Matsui, M., Tominaga, A., Liu, W. Z. & Tanaka-Ueno, T. Reduced genetic variation in the Japanese giant salamander, Andrias japonicus (Amphibia: Caudata). Mol. Phylogenet. Evol. 49, 318–326 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 103.

    Matsui, M. et al. Phylogenetic relationships of two Salamandrella species as revealed by mitochondrial DNA and allozyme variation (Amphibia: Caudata: Hynobiidae). Mol. Phylogenet. Evol. 48, 84–93 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 104.

    Malyarchuk, B., Derenko, M. & Denisova, G. Phylogeny and genetic history of the Siberian salamander (Salamandrella keyserlingii, Dybowski, 1870) inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 67, 348–357 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 105.

    Honda, A. et al. Late Pleistocene climate change and population dynamics of Japanese Myodes voles inferred from mitochondrial cytochrome b sequences. J. Mammal. 100, 1156–1168 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 106.

    Moritz, C. Defining “evolutionarily significant units” for conservation. Trends Ecol. Evol. 9, 373–375 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings

    How to get salt out of water: Make it self-eject