Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds) Tropical Montane Cloud Forests: Science for Conservation and Management (Cambridge Univ. Press, 2011); https://doi.org/10.1017/CBO9780511778384
Mulligan, M. in Tropical Montane Cloud Forests: Science for Conservation and Management (eds Bruijnzeel, L. A. et al.) 14–38 (Cambridge Univ. Press, 2011); https://doi.org/10.1017/CBO9780511778384.004
Doumenge, C., Gilmour, D., Pérez, M. R. & Blockhus, J. in Tropical Montane Cloud Forests (eds Hamilton, L. S. et al.) 24–37 (Springer-Verlag, 1995).
Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
Google Scholar
Bruijnzeel, L. A., Mulligan, M. & Scatena, F. N. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol. Process. 25, 465–498 (2011).
Google Scholar
Gentry, A. H. Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63, 19–28 (1992).
Google Scholar
Foster, P. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Sci. Rev. 55, 73–106 (2001).
Google Scholar
Hamilton, L. S., Juvik, J. O. & Scatena, F. N. in Tropical Montane Cloud Forests (eds Hamilton, L. S. et al.) 1–18 (Springer-Verlag, 1995).
Ponce-Reyes, R. et al. Vulnerability of cloud forest reserves in Mexico to climate change. Nat. Clim. Change 2, 448–452 (2012).
Google Scholar
Swenson, J. J. et al. Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecol. 12, 1 (2012).
Google Scholar
Gould, W. A., González, G. & Rivera, G. C. Structure and composition of vegetation along an elevational gradient in Puerto Rico. J. Veg. Sci. 17, 653–664 (2006).
Google Scholar
Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).
Google Scholar
Paulsen, J. & Körner, C. A climate-based model to predict potential treeline position around the globe. Alp. Bot. 124, 1–12 (2014).
Google Scholar
Jarvis, A. & Mulligan, M. The climate of cloud forests. Hydrol. Process. 25, 327–343 (2011).
Google Scholar
Scatena, F. N., Bruijnzeel, L. A., Bubb, P. & Das, S. in Tropical Montane Cloud Forests: Science for Conservation and Management (eds Bruijnzeel, L. A. et al.) 3–13 (Cambridge Univ. Press, 2011); https://doi.org/10.1017/CBO9780511778384.003
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Google Scholar
Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).
Google Scholar
Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).
Google Scholar
Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).
Google Scholar
Kreft, H., Jetz, W., Mutke, J. & Barthlott, W. Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography 33, 408–419 (2010).
Google Scholar
Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).
Google Scholar
Venter, Z. S., Cramer, M. D. & Hawkins, H.-J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).
Google Scholar
Lawton, R. O., Nair, U. S., Pielke, R. A. & Welch, R. M. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294, 584–587 (2001).
Google Scholar
Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).
Google Scholar
Guo, W.-Y. et al. Half of the world’s tree biodiversity is unprotected and is increasingly threatened by human activities. Preprint at bioRxiv https://doi.org/10.1101/2020/04.21.052464 (2020).
Helmer, E. H. et al. Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost. PLoS ONE 14, e0213155 (2019).
Google Scholar
Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).
Google Scholar
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
Google Scholar
Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (Cambridge Univ. Press, 2012).
Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
Google Scholar
Beusekom, A. E. V., González, G. & Scholl, M. A. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change. Atmos. Chem. Phys. 17, 7245–7259 (2017).
Google Scholar
Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).
Google Scholar
Gross, J. E., Goetz, S. J. & Cihlar, J. Application of remote sensing to parks and protected area monitoring: introduction to the special issue. Remote Sens. Environ. 113, 1343–1345 (2009).
Google Scholar
Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).
Google Scholar
Di Minin, E. & Toivonen, T. Global protected area expansion: creating more than paper parks. BioScience 65, 637–638 (2015).
Google Scholar
Wetzel, F. T., Beissmann, H., Penn, D. J. & Jetz, W. Vulnerability of terrestrial island vertebrates to projected sea-level rise. Glob. Change Biol. 19, 2058–2070 (2013).
Google Scholar
Keil, P., Storch, D. & Jetz, W. On the decline of biodiversity due to area loss. Nat. Commun. 6, 8837 (2015).
Google Scholar
Rybicki, J. & Hanski, I. Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecol. Lett. 16, 27–38 (2013).
Google Scholar
Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).
Google Scholar
Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).
Google Scholar
Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (WW Norton & Company, 2016).
Liu, J. et al. Complexity of coupled human and natural systems. Science 317, 1513–1516 (2007).
Google Scholar
Schulze, K., Malek, Ž. & Verburg, P. H. Towards better mapping of forest management patterns: a global allocation approach. For. Ecol. Manage. 432, 776–785 (2019).
Google Scholar
Curtis, C. A., Pasquarella, V. J. & Bradley, B. A. Landscape characteristics of non-native pine plantations and invasions in southern Chile. Austral Ecol. 44, 1213–1224 (2019).
Google Scholar
Aldrich, M., Billington, C., Edwards, M. & Laidlaw, R. A Global Directory of Tropical Montane Cloud Forests (WCMC, 1997).
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
Google Scholar
Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad https://doi.org/10.5061/dryad.kd1d4 (2017).
Danielson, J. J. & Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) Open-File Report No. 2011-1073 (USGS, 2011).
Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186 (2000).
Google Scholar
Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
Google Scholar
Karmalkar, A. V., Bradley, R. S. & Diaz, H. F. Climate Change scenario for Costa Rican montane forests. Geophys. Res. Lett. 35, L11702 (2008).
Google Scholar
Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).
Google Scholar
Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).
Google Scholar
Heikkinen, R. K. et al. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 30, 751–777 (2006).
Google Scholar
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
Google Scholar
Fithian, W. & Hastie, T. Finite-sample equivalence in statistical models for presence-only data. Ann. Appl. Stat. 7, 1917–1939 (2013).
Google Scholar
Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. R. Stat. Soc. Ser. A 135, 370–384 (1972).
Google Scholar
Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Chapman & Hall/CRC Monographs on Statistics and Applied Probability, 1990).
Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327–338 (2012) .
Google Scholar
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
Google Scholar
Aide, T. M. et al. Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45, 262–271 (2013).
Google Scholar
Aide, T. M., Ruiz-Jaen, M. C. & Grau, H. R. in Tropical Montane Cloud Forests: Science for Conservation and Management (eds Bruijnzeel, L. A. et al.) 101–109 (Cambridge Univ. Press, 2011).
Schwartz, N. B., Aide, T. M., Graesser, J., Grau, H. R. & Uriarte, M. Reversals of reforestation across Latin America limit climate mitigation potential of tropical forests. Front. For. Glob. Change 3, 85 (2020).
Google Scholar
Bubb, P. et al. Cloud Forest Agenda (UNEP-WCMC, 2004); https://www.unep-wcmc.org/cloud-forest-agenda
Bockor, I. Analyse von Baumartenzusammensetzung und Bestandes-struckturen eines andinen Wolkenwaldes in Westvenezuela als Grundlagezur Wald-typengliederung. PhD thesis, Univ. Göttingen (1979).
The State of the World’s Forests 2020: Forests, Biodiversity and People (FAO & UNEP, 2020); https://doi.org/10.4060/ca8642en
Ribas, L. G., dos, S., Pressey, R. L., Loyola, R. & Bini, L. M. A global comparative analysis of impact evaluation methods in estimating the effectiveness of protected areas. Biol. Conserv. 246, 108595 (2020).
Google Scholar
Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2020).
Google Scholar
Khandker, S., B. Koolwal, G. & Samad, H. Handbook on Impact Evaluation: Quantitative Methods and Practices (World Bank, 2009).
Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209 (2014).
Google Scholar
Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089–16094 (2008).
Google Scholar
Laurance, W. F. et al. Predictors of deforestation in the Brazilian Amazon. J. Biogeogr. 29, 737–748 (2002).
Google Scholar
Etter, A., McAlpine, C., Wilson, K., Phinn, S. & Possingham, H. Regional patterns of agricultural land use and deforestation in Colombia. Agric. Ecosyst. Environ. 114, 369–386 (2006).
Google Scholar
Geist, H. J. & Lambin, E. F. What drives tropical deforestation? LUCC Report Series No. 4 (LUCC, 2001).
Nelson, A. et al. A suite of global accessibility indicators. Sci. Data 6, 266 (2019).
Google Scholar
Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).
Google Scholar
Körner, C., Paulsen, J. & Spehn, E. M. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp. Bot. 121, 73 (2011).
Google Scholar
The IUCN Red List of Threatened Species version 2016.1 (IUCN, 2016); http://www.iucnredlist.org
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
Google Scholar
Storch, D., Keil, P. & Jetz, W. Universal species–area and endemics–area relationships at continental scales. Nature 488, 78–81 (2012).
Google Scholar
Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9, 215–227 (2006).
Google Scholar
Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).
Google Scholar
Source: Ecology - nature.com