in

Landscape change patterns at three stages of the construction and operation of the TGP

  • 1.

    ICOLD (International Commission On Large Dams). World Register of Dams. Preprint at https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp (2020).

  • 2.

    Lehner, B. et al. High resolution mapping of the world’s reservoirs and dams for sustainable river flow management. Front. Ecol. Environ. 9(9), 494–502. https://doi.org/10.1890/100125 (2013).

    Article 

    Google Scholar 

  • 3.

    Moussa, A., Soliman, M.& Aziz, M. Environmental evaluation for High Aswan Dam since its construction until present. In: Sixth International Water Technology Conference, IWTC, Alexandria, Egypt (2001).

  • 4.

    Strand, H., et al. Sourcebook on remote sensing and biodiversity indicators. NASA-NGO Biodiversity Working Group and UNEP-WCMC (2007).

  • 5.

    Grumbine, R. E. & Pandit, M. K. Threats from India’s Himalaya dams. Science 339(6115), 36–37. https://doi.org/10.1126/science.1227211 (2013).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Chen, C., Ma, M., Wu, S., Jia, J. & Wang, Y. Complex effects of landscape, habitat and reservoir operation on riparian vegetation across multiple scales in a human-dominated landscape. Ecol. Indic. 94, 482–490. https://doi.org/10.1016/j.ecolind.2018.04.040 (2018).

    Article 

    Google Scholar 

  • 7.

    Milliman, J. D. & Meade, R. H. World-wide delivery of river sediment to the oceans. J. Geol. 91, 1–21 (1983).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Tonkin, J. D. et al. Flow regime alternation degrades ecological networks in riparian ecosystems. Nat. Ecol. Evol. 2, 86–93. https://doi.org/10.1038/s41559-017-0379-0 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 9.

    Nillson, C., Reidy, C. A., Dynesius, M. & Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 308, 405–408 (2005).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Mitsch, W. et al. Optimizing ecosystem services in China. Science 322(5901), 528 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Stone, R. Three Gorges Dam: into the unknown. Science 333, 817 (2008).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Fu, B. J. et al. Three Gorges Project: efforts and challenges for the environment. Prog. Phys. Geogr. 34(6), 741–754. https://doi.org/10.1177/0309133310370286 (2010).

    Article 

    Google Scholar 

  • 13.

    Xu, X. B. et al. Unravelling the effects of large-scale ecological programs on ecological rehabilitation of China’s Three Gorges Dam. J. Clean Prod. https://doi.org/10.1016/j.jclepro.2020.120446 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Yaeger, M. A., Massey, J. H., Reba, M. L. & Adviento-Borbe, M. A. A. Trends in the construction of on-farm irrigation reservoirs in response to aquifer decline in eastern Arkansas: implications for conjunctive water resource management. Agric. Water Manage. 208, 373–383. https://doi.org/10.1016/j.agwat.2018.06.040 (2018).

    Article 

    Google Scholar 

  • 15.

    Bai, J. et al. Soil organic carbon contents of two natural inland saline-alkalined wetlands in northeastern China. J. Soil. Water Conserv. 62(6), 447–452 (2007).

    Google Scholar 

  • 16.

    Chen, L. G., Qian, X. & Shi, Y. Critical area identification of potential soil loss in a typical watershed of the Three Gorges Reservoir Region. Water Resour. Manag. 25(13), 3445–3463. https://doi.org/10.1007/s11269-011-9864-4 (2011).

    Article 

    Google Scholar 

  • 17.

    Xiao, Q., Xiao, Y. & Tan, H. Changes to soil conservation in the Three Gorges Reservoir Area between 1982 to 2015. Environ. Monit. Assess. 192, 44. https://doi.org/10.1007/s10661-019-7983-1 (2020).

    Article 

    Google Scholar 

  • 18.

    Zhao, Q. H. et al. Landscape change and hydrologic alteration associated with dam construction. Int. J. Appl. Earth Obs. 16(1), 17–26. https://doi.org/10.1016/j.jag.2011.11.009 (2012).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Zhao, C. L. et al. Ecological security patterns assessment of Liao river basin. Sustainability 10, 2401. https://doi.org/10.3390/su10072401 (2018).

    Article 

    Google Scholar 

  • 20.

    Yang, L. M. & Zhu, Z. L. The status quo and expectation of global and local land cover and land use RS research. J. Nat. Resour. 14(4), 340–344 (1999).

    Google Scholar 

  • 21.

    Meyfroidt, P., Lambin, E. F., Erb, K. H. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Env. Sust. 5(5), 438–444. https://doi.org/10.1016/j.cosust.2013.04.003 (2013).

    Article 

    Google Scholar 

  • 22.

    Forman, R. T. T. Some general principles of landscape and regional ecology. Landscape Ecol. 10(3), 133–142. https://doi.org/10.1007/BF00133027 (1995).

    Article 

    Google Scholar 

  • 23.

    Xiao, D. N., Chen, W. B. & Guo, F. L. On the basic concepts and contents of ecological security. Chin. J. Appl. Ecol. 13(3), 354–383. https://doi.org/10.13287/j.1001-9332.2002.0084 (2002).

    Article 

    Google Scholar 

  • 24.

    Gustafson, E. J., Roberts, L. J. & Leefers, L. A. Linking linear programming and spatial simulation models to predict landscape effects of forest management alternatives. J. Environ. Manage. 81(4), 339–350. https://doi.org/10.1016/j.jenvman.2005.11.009 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 25.

    Restrepo, A. M. C. et al. Land cover change during a period of extensive landscape restoration in Ningxia Hui Autonomous Region China. Sci Total Environ. 598, 669–679. https://doi.org/10.1016/j.scitotenv.2017.04.124 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Gong, W. F. et al. Effect of terrain on landscape patterns and ecological effects by a gradient-based RS and GIS analysis. J. For. Res. 28(5), 1061–1072. https://doi.org/10.1007/s11676-017-0385-8 (2017).

    Article 

    Google Scholar 

  • 27.

    Birhane, E. et al. Land use land cover changes along topographic gradients in Hugumburda national forest priority area, Northern Ethiopia. Remote Sens. Appl. Soc. Environ. 13, 61–68. https://doi.org/10.1016/j.rsase.2018.10.017 (2019).

    Article 

    Google Scholar 

  • 28.

    Tian, P. et al. Research on land use changes and ecological risk assessment in Yangjiang River Basin in Zhejiang Province China. Sustainability 11(10), 2817. https://doi.org/10.3390/su11102817 (2019).

    Article 

    Google Scholar 

  • 29.

    Xiong, M., Xu, Q. X. & Yuan, J. Analysis of multi-factors affecting sediment load in the Three Gorges Reservoir. Quatern Int. 208, 76–84. https://doi.org/10.1016/j.quaint.2009.01.010 (2009).

    Article 

    Google Scholar 

  • 30.

    Feng, L. & Xu, J. Y. Farmers’willingness to participate in the next-stage Grain-for-Green project in the Three Gorges Reservoir Area China. Environ. Manage. 56, 505–518. https://doi.org/10.1007/s00267-015-0505-1 (2015).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Cao, S. et al. Ecosystem water imbalances created during ecological restoration by afforestation in China, and lessons for other developing countries. J. Environ. Manage. 183, 843–849. https://doi.org/10.1016/j.jenvman.2016.07.096 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 32.

    Galicia, L., Zarco-Arista, A. E. & Mendoza-Robles, K. I. Land use/cover, landforms and fragmentation patterns in a tropical dry forest in the southern Pacific region of Mexico. Singapore J. Trop. Geo. 29(2), 137–154. https://doi.org/10.1111/j.1467-9493.2008.00326.x (2008).

    Article 

    Google Scholar 

  • 33.

    Zhong, S. Q. et al. Mechanized and optimized configuration pattern of crop-mulberry systems for controlling agricultural non-point source pollution on sloping farmland in the Three Gorges Reservoir Area, China. Int. J. Env. Res. Pub. He. 17, 3599. https://doi.org/10.3390/ijerph17103599 (2020).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Qi, S. W., Yue, Z. Q., Liu, C. L. & Zhou, Y. D. Significance of outward dipping strata in argillaceous limestones in the area of the Three Gorges reservoir China. Bull. Eng. Geol. Environ. 68, 195–200. https://doi.org/10.1007/s10064-009-0206-1 (2009).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Zhang, Q. et al. The spatial granularity effect, changing landscape patterns, and suitable landscape metrics in the Three Gorges Reservoir Area, 1995–2015. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2020.106259 (2020).

    Article 

    Google Scholar 

  • 36.

    Yang, H. C., Wang, G. Q., Wang, L. J. & Zheng, B. H. Impact of land use changes on water quality in headwaters of the Three Gorges Reservoir. Environ. Sci. Pollut. Res. Int. 23(12), 11448–11460. https://doi.org/10.1007/s11356-015-5922-4 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 37.

    Shen, Z. Y. et al. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area. Agric. Water Manage. 96, 1435–1442. https://doi.org/10.1016/j.agwat.2009.04.017 (2009).

    Article 

    Google Scholar 

  • 38.

    Zhang, J. X., Liu, Z. J. & Sun, X. X. Changing landscape in the Three Gorges Reservoir Area of Yangtze River from 1977 to 2005: land use/land cover, vegetation cover changes estimated using multi-source satellite data. Int. J. Appl. Earth Obs. 11, 403–412. https://doi.org/10.1016/j.jag.2009.07.004 (2009).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Huang, C. B. et al. Land use/cover change in the Three Gorges Reservoir area, China: reconciling the land use conflicts between development and protection. CATENA 175, 388–399. https://doi.org/10.1016/j.catena.2019.01.002 (2019).

    Article 

    Google Scholar 

  • 40.

    Wang, W. & Pu, Y. Analysis of landscape patterns and the trend of forest resources in the Three Gorges Reservoir area. J. Geosci. Environ. Protect. 6, 181–192. https://doi.org/10.4236/gep.2018.65015 (2018).

    Article 

    Google Scholar 

  • 41.

    Li, Z., Wang, R., Zhou, Z. & Luo, X. Three Gorges Project’s impact on the water resource and environment of Yangtze River. J. Appl. Sci. 13(17), 3394–3399. https://doi.org/10.3923/jas.2013.3394.3399 (2013).

    Article 

    Google Scholar 

  • 42.

    Liang, X. Y. et al. Exploring cultivated land evolution in mountainous areas of Southwest China, an empirical study of development since the 1980s. Land Degrad. Dev. 32, 546–558. https://doi.org/10.1002/ldr.3735 (2021).

    Article 

    Google Scholar 

  • 43.

    Kelly, M., Tuxen, K. A. & Stalberg, D. Mapping changes to vegetation pattern in a restoring wetland: Finding pattern metrics that are consistent across spatial scale and time. Ecol. Indic. 11(2), 263–273. https://doi.org/10.1016/j.ecolind.2010.05.003 (2011).

    Article 

    Google Scholar 

  • 44.

    Guo, S. Q. et al. Spatiotemporal variation and landscape pattern of soil erosion in Qinling Mountains. Chin. J. Ecol. 38(7), 2167–2176. https://doi.org/10.13292/j.1000-4890.201907.016 (2019).

    Article 

    Google Scholar 

  • 45.

    Peng, W. J. & Shu, Y. G. Analysis of landscape ecological security and cultivated land evolution in the Karst mountain area. Acta Ecol. Sinc. 38(3), 852–865. https://doi.org/10.5846/stxb201612062513 (2018).

    Article 

    Google Scholar 

  • 46.

    Saura, S. Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices. Landscape Ecol. 19(2), 197–209. https://doi.org/10.1023/B:LAND.0000021724.60785.65 (2004).

    Article 

    Google Scholar 

  • 47.

    Kerenyi, A. & Szabo, G. Human impact on topography and landscape pattern in the Upper Tisza region NE-Hungary. Geogr. Fis. Din. Quat. 30(2), 193–196. https://doi.org/10.1144/GSL.SP.2007.270.01.17 (2007).

    Article 

    Google Scholar 

  • 48.

    Zhang, Y. X. et al. Changes in cultivated land patterns and driving forces in the Three Gorges Reservoir area, China, from 1992 to 2015. J. Mt. Sci. 17(1), 203–215. https://doi.org/10.1007/s11629-019-5375-1 (2020).

    Article 

    Google Scholar 

  • 49.

    Teng, M. J. et al. Impacts of forest restoration on soil erosion in the Three Gorges Reservoir area China. Sci. Total Environ. 697, 134164. https://doi.org/10.1016/j.scitotenv.2019.134164 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    He, L. H., King, L. & Tong, J. On the land use in the Three Gorges Reservoir area. J. Geogr. Sci. 13(4), 416–422. https://doi.org/10.1007/BF02837879 (2003).

    Article 

    Google Scholar 

  • 51.

    Gao, J. M. et al. Bioavailability of organic phosphorus in the water level fluctuation zone soil and the effects of ultraviolet irradiation on it in the Three Gorges Reservoir China. Sci. Total Environ. 738, 139912. https://doi.org/10.1016/j.scitotenv.2020.139912 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Xie, Y. H. et al. The impact of Three Gorges Dam on the downstream eco-hydrological environment and vegetation distribution of East Dongting Lake. Ecohydrology 8(4), 738–746. https://doi.org/10.1002/eco.1543 (2015).

    Article 

    Google Scholar 

  • 53.

    Cai, H. Y. et al. Quantifying the impact of the Three Gorges Dam on the thermal dynamics of the Yangtze River. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aab9e0 (2018).

    Article 

    Google Scholar 

  • 54.

    Tang, Q. et al. Flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone of the Three Gorges Reservoir China. Sci. Total Environ. 548, 410–420. https://doi.org/10.1016/j.scitotenv.2015.12.158 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 55.

    Shen, Z. Y. et al. Assessment of nitrogen and phosphorus loads and casual factors from different land use and soil types in the Three Gorges Reservoir Area. Sci. Total Environ. 454–455, 383–392. https://doi.org/10.1016/j.scitotenv.2013.03.036 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 56.

    Zhu, K. W. et al. Vegetation of the water-level fluctuation zone in the Three Gorges Reservoir at the initial impoundment stage. Glob. Ecol. Conserv. 21, e00866. https://doi.org/10.1016/j.gecco.2019.e00866 (2020).

    Article 

    Google Scholar 

  • 57.

    Chen, C. D. et al. Restoration design for Three Gorges Reservoir shorelands, combining Chinese traditional agro-ecological knowledge with landscape ecological analysis. Ecol. Eng. 71, 584–597. https://doi.org/10.1016/j.ecoleng.2014.07.008 (2014).

    Article 

    Google Scholar 

  • 58.

    Bao, Y., Gao, P. & He, X. The water-level fluctuation zone of Three Gorges Reservoir-a unique geomorphological unit. Earth Rev. 150, 14–24. https://doi.org/10.1016/j.earscirev.2015.07.005 (2015).

    Article 

    Google Scholar 

  • 59.

    Li, Y. et al. Homogeneous selection dominates the microbial community assembly in the sediment of the Three Gorges Reservoir. Sci. Total. Environ. 690, 50–60. https://doi.org/10.1016/j.scitotenv.2019.07.014 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 60.

    Wang, L. J. et al. Role of reservoir construction in regional land use change in Pengxi River basin upstream of the Three Gorges Reservoir in China. Environ. Earth Sci. 75, 1048. https://doi.org/10.1007/s12665-016-5758-3 (2016).

    Article 

    Google Scholar 

  • 61.

    Zhong, H. P. et al. Analysis of stage response of land use in Three Gorges Reservoir area: taking Hubei section of the reservoir area as an example. J. Central Normal Univ. Nat. Sci. 53(4), 582–593. https://doi.org/10.19603/j.cnki.1000-1190.2019.04.019 (2019).

    Article 

    Google Scholar 

  • 62.

    Brady, N.C. & Weil, R.R. The nature and properties of Soils14th. Prentice Hall, 2007:212–213.

  • 63.

    Gerrard, J. Fundamentals of Soil: Berlin Germany: Routledge, 2000:110–115.

  • 64.

    Otukei, J. R. & Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 12S, S27–S31. https://doi.org/10.1016/j.jag.2009.11.002 (2010).

    Article 

    Google Scholar 

  • 65.

    Li, R. K., Li, Y. B., Wen, W. & Zhou, Y. L. Comparative study on spatial difference of elevation and slope in soil erosion evolution in typical watershed. J. Soil Water Conserv. 31(5), 99–107. https://doi.org/10.13870/j.cnki.stbcxb.2017.05.016 (2017).

    Article 

    Google Scholar 

  • 66.

    Li, S. F. et al. An estimation of the extent of cropland abandonment in mountainous regions of China. Land Degrad Dev. 29(5), 1327–1342. https://doi.org/10.1002/ldr.2924 (2018).

    Article 

    Google Scholar 

  • 67.

    Sang, X. et al. Intensity and stationarity analysis of land use change based on CART algorithm. Sci. Rep-UK 9, 12279. https://doi.org/10.1038/s41598-019-48586-3 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 68.

    Strehmel, A., Schmalz, B. & Fohrer, N. Evaluation of land use, land management and soil conservation strategies to reduce non-point source pollution loads in the Three Gorges Region China. Environ Manage 58, 906–921. https://doi.org/10.1007/s00267-016-0758-3 (2016).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 69.

    Liang, X. Y. et al. Traditional agroecosystem transition in mountainous area of Three Gorges Reservoir Area. J Geogr Sci. 30(2), 281–296. https://doi.org/10.1007/s11442-020-1728-5 (2020).

    Article 

    Google Scholar 

  • 70.

    Kalerstaghi, A. & Jeloudar, Z. J. Land use/cover change and driving force analyses in parts of northern Iran using RS and GIS techniques. Arab. J. Geosci. 4(3–4), 401–411. https://doi.org/10.1007/s12517-009-0078-5 (2011).

    Article 

    Google Scholar 

  • 71.

    Ministry of Ecology and Environment of the People’s Republic of China (MEE). Gazette of eco-environmental monitoring of three gorges project. Yangzi River, China 1997–2017 (in Chinese) (2018). http://jcs.mep.gov.cn/hjzl/sxgb/2011sxgb/201206/P020120608565218279423.pdf. Accessed 3 March 2019.

  • 72.

    Xu, X. B. et al. Unravelling the effects of large-scale ecological programs on ecological rehabilitation of China’s Three Gorges Dam. J. Clean. Prod. 256, 120446. https://doi.org/10.1016/j.jclepro.2020.120446 (2020).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Staged Assessment Group of Chinese Academy of Engineering (SAGCAE). Staged Assessment Report of the Three Gorges Project (Comprehensive Volume) (in Chinese). Chinese Water Power Press, Beijing, China (2010).

  • 74.

    Li, R. K. et al. Study on the temporal and spatial variation of soil erosion intensity in typical watersheds of the Three Gorges Reservoir Area from 1988 to 2015: a case based on the Daning and Meixi River Watershed. Acta Ecological Sinica. 38(17), 6243–7257. https://doi.org/10.5846/stxb201706071040 (2018).

    Article 

    Google Scholar 

  • 75.

    Birhanu, L., Hailu, B. T., Bekele, T. & Demissew, S. Land use/land cover change along elevation and slope gradient in highlands of Ethiopia. Remote Sensing Appl. Soc. Environ. 16, 100260 (2019).

    Article 

    Google Scholar 

  • 76.

    Huang, X.Y., Ma, J.S. & Tang, Q. Introduction to geographic information systems. Beijing: Higher Education Press. 165–171 (2001).

  • 77.

    Xiao, J. Y. et al. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landscape Urban Plan. 75, 69–80. https://doi.org/10.1016/j.landurbplan.2004.12.005 (2006).

    Article 

    Google Scholar 

  • 78.

    Ye, Q. H. et al. Geospatial-temporal analysis of land-use changes in the Yellow River Delta during the last 40 years. Sci China Ser D. 47, 1008–1024. https://doi.org/10.1360/03yd0151 (2004).

    Article 

    Google Scholar 

  • 79.

    Liu, J. Y. The Land use in Xizang Autonomous Region (Science Press, 1992).

    Google Scholar 

  • 80.

    Li, X. Z. et al. The adequacy of different landscape metrics for various landscape patterns. Pattern Recogn. 38, 2626–2638. https://doi.org/10.1016/j.patcog.2005.05.009 (2005).

    Article 

    Google Scholar 

  • 81.

    Buyantuyev, A., Wu, J. G. & Gries, C. Multiscale analysis of the urbanization pattern of the Phoenix metropolitan landscape of USA: Time, space and thematic resolution. Landscape Urban Plan. 94(3), 206–217. https://doi.org/10.1016/j.landurbplan.2009.10.005 (2010).

    Article 

    Google Scholar 

  • 82.

    McGarigal, K., Cushman, S.A. & Ene, E. FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Preprint at http://www.umass.edu/landeco/research/fragstats/fragstats.html (2012).

  • 83.

    Liu, X. L., Yang, Z. P., Di, F. & Chen, X. G. Evaluation on tourism ecological security in nature heritage sites—case of Kanas nature reserve of Xinjiang China. Chin Geogra Sci. 19(3), 265–273. https://doi.org/10.1007/s11769-009-026s5-z (2009).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Zhang, R. S. et al. Landscape ecological security response to land use change in the tidal flat reclamation zone China. Environ Monit Assess. https://doi.org/10.1007/s10661-015-4999-z (2016).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Vivienne Sze on crossing the hardware-software divide for efficient artificial intelligence

    China’s transition to electric vehicles