Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
Google Scholar
Lindroth, A., Grelle, A. & Morén, A.-S. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Glob. Change Biol. 4, 443–450 (1998).
Google Scholar
Kasischke, E. S., Christensen, N. Jr & Stocks, B. J. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5, 437–451 (1995).
Google Scholar
Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).
Google Scholar
Welp, L. R. et al. Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI. Atmos. Chem. Phys. 16, 9047–9066 (2016).
Google Scholar
Myneni, R. B., Keeling, C., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).
Google Scholar
Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).
Google Scholar
Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).
Google Scholar
Giguère-Croteau, C. et al. North America’s oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster. Proc. Natl Acad. Sci. USA 116, 2749–2754 (2019).
Google Scholar
Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).
Google Scholar
Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).
White, J. C., Wulder, M. A., Hermosilla, T., Coops, N. C. & Hobart, G. W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens. Environ. 194, 303–321 (2017).
Google Scholar
Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008).
Google Scholar
Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).
Google Scholar
Wang, J. A. et al. Extensive land cover change across Arctic–boreal northwestern North America from disturbance and climate forcing. Glob. Change Biol. 26, 807–822 (2020).
Google Scholar
Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S. & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).
Google Scholar
Wang, J. A. & Friedl, M. A. The role of land cover change in Arctic–boreal greening and browning trends. Environ. Res. Lett. 14, 125007 (2019).
Google Scholar
Beck, P. S. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 045501 (2011).
Google Scholar
de Groot, W. J., Flannigan, M. D. & Cantin, A. S. Climate change impacts on future boreal fire regimes. For. Ecol. Manage. 294, 35–44 (2013).
Google Scholar
Bond-Lamberty, B., Peckham, S. D., Ahl, D. E. & Gower, S. T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450, 89–92 (2007).
Google Scholar
Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).
Google Scholar
Goulden, M. L. et al. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob. Change Biol. 17, 855–871 (2011).
Google Scholar
Pugh, T. A. M., Arneth, A., Kautz, M., Poulter, B. & Smith, B. Important role of forest disturbances in the global biomass turnover and carbon sinks. Nat. Geosci. 12, 730–735 (2019).
Google Scholar
Zimov, S. et al. Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2. Science 284, 1973–1976 (1999).
Google Scholar
Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755 (2014).
Google Scholar
Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
Google Scholar
Matasci, G. et al. Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots. Remote Sens. Environ. 216, 697–714 (2018).
Google Scholar
Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).
Google Scholar
Wulder, M. A., Hermosilla, T., White, J. C. & Coops, N. C. Biomass status and dynamics over Canada’s forests: disentangling disturbed area from associated aboveground biomass consequences. Environ. Res. Lett. 15, 094093 (2020).
Google Scholar
Margolis, H. A. et al. Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America. Can. J. For. Res. 45, 838–855 (2015).
Google Scholar
Neigh, C. S. et al. Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR. Remote Sens. Environ. 137, 274–287 (2013).
Google Scholar
Fisher, J. B. et al. Missing pieces to modeling the Arctic–boreal puzzle. Environ. Res. Lett. 13, 020202 (2018).
Google Scholar
Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
Google Scholar
Kurz, W. A. et al. Carbon in Canada’s boreal forest—a synthesis. Environ. Rev. 21, 260–292 (2013).
Google Scholar
Price, D., Peng, C., Apps, M. & Halliwell, D. Simulating effects of climate change on boreal ecosystem carbon pools in central Canada. J. Biogeogr. 26, 1237–1248 (1999).
Google Scholar
Stocks, B. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. 107, FFR-5 (2002).
Kasischke, E. S., Williams, D. & Barry, D. Analysis of the patterns of large fires in the boreal forest region of Alaska. Int. J. Wildland Fire 11, 131–144 (2002).
Google Scholar
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Google Scholar
Fredeen, A. L., Waughtal, J. D. & Pypker, T. G. When do replanted sub-boreal clearcuts become net sinks for CO2? For. Ecol. Manage. 239, 210–216 (2007).
Google Scholar
Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 201407302 (2014).
Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).
Google Scholar
Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9, 852–857 (2019).
Google Scholar
Gedalof, Z. & Berg, A. A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century: limited CO2 fertilization of forests. Glob. Biogeochem. Cycles 24, GB3027 (2010).
Google Scholar
Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).
Google Scholar
Duncanson, L. et al. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sens. Environ. 242, 111779 (2020).
Google Scholar
Helbig, M., Pappas, C. & Sonnentag, O. Permafrost thaw and wildfire: equally important drivers of boreal tree cover changes in the Taiga Plains, Canada. Geophys. Res. Lett. 43, 1598–1606 (2016).
Google Scholar
Carpino, O. A., Berg, A. A., Quinton, W. L. & Adams, J. R. Climate change and permafrost thaw-induced boreal forest loss in northwestern Canada. Environ. Res. Lett. 13, 084018 (2018).
Google Scholar
Margolis, H., Sun, G., Montesano, P. M. & Nelson, R. F. NACP LiDAR-Based Biomass Estimates, Boreal Forest Biome, North America, 2005–2006 (ORNL DAAC, 2015); https://doi.org/10.3334/ORNLDAAC/1273
Spawn, S. A. & Gibbs, H. K. Global Aboveground and Belowground Biomass Carbon Density Maps for the Year 2010 (ORNL DAAC, 2020); https://doi.org/10.3334/ORNLDAAC/1763
Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global Datasets of Forest Above-ground Biomass for the Year 2017 Version 1 (Centre for Environmental Data Analysis, 2019); https://doi.org/10.5285/bedc59f37c9545c981a839eb552e4084
Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manage. 54, 1249–1266 (2014).
Google Scholar
Wulder, M. A. et al. Monitoring Canada’s forests. Part 1: completion of the EOSD land cover project. Can. J. Remote Sens. 34, 549–562 (2008).
Google Scholar
Jin, S., Yang, L., Zhu, Z. & Homer, C. A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011. Remote Sens. Environ. 195, 44–55 (2017).
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Google Scholar
Roy, D. P., Boschetti, L., Justice, C. & Ju, J. The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 112, 3690–3707 (2008).
Google Scholar
Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).
Google Scholar
R Core Team R: A Language and Environment for Statistical Computing Version 3.6.0 (R Foundation for Statistical Computing, 2019).
Greenwell, B., Boehmke, B., Cunningham, J. & GMB Developers. gbm: Generalized Boosted Regression Models Version 2.1.5. R package (2019).
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 37, 4302–4315 (2017).
Google Scholar
Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O. & Friedl, M. A. ABoVE: Annual Land Cover in the ABoVE Core Domain from Landsat, 1984–2014 (ORNL DAAC, 2019); https://doi.org/10.3334/ORNLDAAC/1691
Canadian National Fire Database—Agency Fire Data (Canadian Forest Service, 2002); https://cwfis.cfs.nrcan.gc.ca/ha/nfdb
Alaskan Large Fire Database (Alaska Interagency Coordination Center, 2002); https://fire.ak.blm.gov/predsvcs/maps.php
Thornton, M. M. et al. Daymet: Monthly Climate Summaries on a 1-km Grid for North America Version 3 (ORNL DAAC, 2018); https://doi.org/10.3334/ornldaac/1345
Lumley, T. leaps: Regression Subset Selection Version 3.0. R package (2017).
Mallows, C. L. Some comments on Cp. Technometrics 42, 87–94 (2000).
Li, Z., Kurz, W. A., Apps, M. J. & Beukema, S. J. Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: recent improvements and implications for the estimation of NPP and NEP. Can. J. For. Res. 33, 126–136 (2003).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Source: Ecology - nature.com