in

Spatial variation and mechanisms of leaf water content in grassland plants at the biome scale: evidence from three comparative transects

  • 1.

    Díaz, S., Hodgson, J. G., Thompson, K., Cabido, M. & Zak, M. R. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2010).

    Article 

    Google Scholar 

  • 2.

    He, N. et al. Ecosystem traits linking functional traits to macroecology. Trends Ecol Evol 34, 200–210. https://doi.org/10.1016/j.tree.2018.11.004 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Reich, P. B. & Lusk, W. C. H. Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecol. Appl. 17, 1982–1988 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 4.

    Shi, P., Preisler, H. K., Quinn, B. K., Zhao, J. & Hlscher, D. Precipitation is the most crucial factor determining the distribution of moso bamboo in Mainland China. Global Ecol. Conserv. 22, e00924 (2020).

    Article 

    Google Scholar 

  • 5.

    Bassirirad, G. H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol. 160, 21–42 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Boyer, J. S. Water transport. Annu. Rev. Plant Physiol. 36, 473–516 (1985).

    Article 

    Google Scholar 

  • 7.

    Kromer, S. Respiration during photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 45–70 (1995).

    Article 

    Google Scholar 

  • 8.

    Carl, V. J. & VanLoocke, A. Terrestrial ecosystems in a changing environment: a dominant role for water. Annu. Rev. Plant Biol. 66, 599–622 (2015).

    Article 
    CAS 

    Google Scholar 

  • 9.

    Heinen, R. B., Qing, Y. & François, C. Role of aquaporins in leaf physiology. J. Exp. Bot. 60, 2971–2985 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Chapin, F. S., Matson, P. A. & Mooney, H. A. Principles of Terrestrial Ecosystem Ecology (Springer, 2011).

    Book 

    Google Scholar 

  • 11.

    Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Zhang, J. et al. C:N: P stoichiometry in China’s forests: from organs to ecosystems. Funct. Ecol. 32, 50–60 (2017).

    Article 

    Google Scholar 

  • 13.

    Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1221–1226 (1977).

    Article 

    Google Scholar 

  • 14.

    Bassirirad, H. & Caldwell, M. M. Root growth, osmotic adjustment and NO3-uptake during and after a period of drought in Artemisia tridentata. Aust. J. Plant Physiol. 19, 493–500 (1992).

    CAS 

    Google Scholar 

  • 15.

    Bassirirad, H. & Caldwell, M. M. Temporal changes in root growth and 15N uptake and water relations of two tussock grass species recovering from water stress. Physiol. Plant. 86, 525–531 (1992).

    Article 

    Google Scholar 

  • 16.

    Bassirirad, H. et al. Short-term patterns in water and nitrogen acquisition by two desert shrubs following a simulated summer rain. Plant Ecol. 145, 27–36 (1999).

    Article 

    Google Scholar 

  • 17.

    Gebauer, R. L. E. & Ehleringer, J. R. Water and nitrogen uptake patterns following moisture pulses in a cold desert community. Ecology 81, 1415 (2000).

    Article 

    Google Scholar 

  • 18.

    Liu, M., Niklas, K. J., Niinemets, L., Hlscher, D. & Shi, P. Comparison of the scaling relationships of leaf biomass versus surface area between spring and summer for two deciduous tree species. Forests 11, 1010 (2020).

    Article 

    Google Scholar 

  • 19.

    Shi, P., Li, Y., Hui, C., Ratkowsky, D. A. & Niinemets, L. Does the law of diminishing returns in leaf scaling apply to vines? Evidence from 12 species of climbing plants. Glob. Ecol. Conserv. 21, e00830 (2019).

    Article 

    Google Scholar 

  • 20.

    Yu, X., Hui, C., Sandhu, H. S., Lin, Z. & Shi, P. Scaling relationships between leaf shape and area of 12 Rosaceae species. Symmetry 11, 1255 (2019).

    Article 

    Google Scholar 

  • 21.

    Liu, C. et al. Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Funct. Ecol. 32, 20–28 (2017).

    Article 

    Google Scholar 

  • 22.

    Am, H. & Fi, W. The role of stomata in sensing and driving environmental change. Nature 424, 901–908 (2003).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Huang, W., Ratkowsky, D. A., Hui, C., Wang, P. & Shi, P. Leaf fresh weight versus dry weight: which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants?. Forests 10, 256 (2019).

    Article 

    Google Scholar 

  • 24.

    Huang, W., Reddy, G. V., Li, Y., Larsen, J. B. & Shi, P. Increase in absolute leaf water content tends to keep pace with that of leaf dry mass—evidence from bamboo plants. Symmetry 12, 1345 (2020).

    Article 

    Google Scholar 

  • 25.

    Yang, Y. et al. Quantifying leaf-trait covariation and its controls across climates and biomes. New Phytol. 221, 155–168 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Huang, W., Fonti, P., Rbild, A., Larsen, J. B. & Hansen, J. K. Variability Among Sites and Climate Models Contribute to Uncertain Spruce Growth Projections in Denmark. Forests 12, 36 (2021).

    Article 

    Google Scholar 

  • 27.

    Aspinwall, M. J. et al. Range size and growth temperature influence Eucalyptus species responses to an experimental heatwave. Glob. Change Biol. 25, 1665–1684 (2019).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Shao, J. et al. Plant evolutionary history mainly explains the variance in biomass responses to climate warming at a global scale. New Phytol. 222, 1338–1351 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    He, J., Reddy, G. V., Liu, M. & Shi, P. A general formula for calculating surface area of the similarly shaped leaves: evidence from six Magnoliaceae species. Glob. Ecol. Conserv. 23, e01129 (2020).

    Article 

    Google Scholar 

  • 30.

    Guo, X., Reddy, G. V., He, J., Li, J. & Shi, P. Mean-variance relationships of leaf bilateral asymmetry for 35 species of plants and their implications. Glob. Ecol. Conserv. 23, e01152 (2020).

    Article 

    Google Scholar 

  • 31.

    Shi, P.-J., Li, Y.-R., Niinemets, Ü., Olson, E. & Schrader, J. Influence of leaf shape on the scaling of leaf surface area and length in bamboo plants. Trees 35, 1–7 (2020).

    Google Scholar 

  • 32.

    Shi, P. et al. Leaf area–length allometry and its implications in leaf shape evolution. Trees 33, 1073–1085 (2019).

    Article 

    Google Scholar 

  • 33.

    Yu, X., Shi, P., Schrader, J. & Niklas, K. J. Nondestructive estimation of leaf area for 15 species of vines with different leaf shapes. Am. J. Bot. 107, 1481–1490. https://doi.org/10.1002/ajb2.1560 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 34.

    Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).

    Article 

    Google Scholar 

  • 35.

    Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Gonzalez-Orozco, C. E. et al. Phylogenetic approaches reveal biodiversity threats under climate change. Nat. Clim. Change 6, 1110–1114 (2016).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–224 (2015).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).

    Article 

    Google Scholar 

  • 39.

    Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Ann. Bot. 99, 1003–1015 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 40.

    Reich, P. B. The world-wide ‘fast–slow’plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Article 

    Google Scholar 

  • 41.

    Kong, D. et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863–872 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Koch, G. W., Scholes, R. J., Steffen, W. L., Vitousek, P. M. & Walker, B. H. The IGBP terrestrial transects: science plan. Global Change Report (1995).

  • 43.

    Liu, Z., Shao, M. A. & Wang, Y. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region China. Agric. Ecosyst. Environ. 142, 184–194 (2011).

    Article 

    Google Scholar 

  • 44.

    Bai, Y. et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89, 2140–2153 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Chen, H. et al. The impacts of climate change and human activities on biogeochemical cycles on the Q inghai-T ibetan P lateau. Glob. Change Biol. 19, 2940–2955 (2013).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Dee, L. E. et al. When do ecosystem services depend on rare species?. Trends Ecol. Evol. 34, 746–758 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Cornelissen, J. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).

    Article 

    Google Scholar 

  • 48.

    Lamont, B. B., Downes, S. & Fox, J. E. Importance–value curves and diversity indices applied to a species-rich heathland in Western Australia. Nature 265, 438–441 (1977).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Zhang, T., Guo, R., Gao, S., Guo, J. & Sun, W. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem. PLoS ONE 10, e0123160 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 50.

    Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).

    Article 

    Google Scholar 

  • 51.

    Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Vivienne Sze on crossing the hardware-software divide for efficient artificial intelligence

    China’s transition to electric vehicles