in

Comparative study of the environmental footprints of marinas on European Islands

  • 1.

    EU. Communication from the Commission. Ports: an engine for growth (2013).

  • 2.

    EU. Directive (EU) 2019/883 of the European Parliament and of the Council of 17 April 2019. 2019(March), 116–142 (2019).

  • 3.

    Chao, M. & Rodríguez, M. New trends in port managing: towards the e-port. J. Marit. Res. 3(2), 35–42 (2006).

    Google Scholar 

  • 4.

    Paiano, A., Crovella, T. & Lagioia, G. Managing sustainable practices in cruise tourism: the assessment of carbon footprint and waste of water and beverage packaging. Tour. Manag. 77(October 2019), 104016. https://doi.org/10.1016/j.tourman.2019.104016 (2020).

    Article 

    Google Scholar 

  • 5.

    Kovačić, M. & Silveira, L. Nautical tourism in Croatia and in Portugal in the late 2010’s: issues and perspectives. Pomorstvo 32(2), 281–289. https://doi.org/10.31217/p.32.2.13 (2018).

    Article 

    Google Scholar 

  • 6.

    Pérez Labajos, C. & Blanco Rojo, B. Leisure ports planning. J. Marit. Res. 3(2), 67–82 (2006).

    Google Scholar 

  • 7.

    BOE. Real Decreto Legislativo 2/2011, de 5 de septiembre, por el que se aprueba el Texto Refundido de la Ley de Puertos del Estado y de la Marina Mercante. Span. Off. Bull. 255, 11. https://www.boe.es/buscar/pdf/2011/BOE-A-2011-16467-consolidado.pdf (2011).

  • 8.

    Gómez, A. G., Valdor, P. F., Ondiviela, B., Díaz, J. L. & Juanes, J. A. Mapping the environmental risk assessment of marinas on water quality: the Atlas of the Spanish coast. Mar. Pollut. Bull. 139(January), 355–365. https://doi.org/10.1016/j.marpolbul.2019.01.008 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Sofiev, M. et al. Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nat. Commun. 9(1), 1–12. https://doi.org/10.1038/s41467-017-02774-9 (2018).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Chen, C., Saikawa, E., Comer, B., Mao, X. & Rutherford, D. Ship emission impacts on air quality and human health in the Pearl River Delta (PRD) Region, China, in 2015, with projections to 2030. GeoHealth 3(9), 284–306. https://doi.org/10.1029/2019GH000183 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Mateos, M. R. Los puertos deportivos como infraestructuras de soporte de las actividades náuticas de recreo en Andalucía. Mar. Infrastruct. Supports Naut. Recreat. Act. Andal. 54, 335–360 (2010).

    Google Scholar 

  • 12.

    Nursey-Bray, M. et al. Vulnerabilities and adaptation of ports to climate change. J. Environ. Plan. Manag. 56(7), 1021–1045. https://doi.org/10.1080/09640568.2012.716363 (2013).

    Article 

    Google Scholar 

  • 13.

    Antequera, P. D., Jaime, D. & Abel, L. Tourism, transport and climate change: the carbon footprint of international air traffic on Islands. Sustainability 13(4), 1795. https://doi.org/10.3390/su13041795 (2021).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Hadjikakou, M., Chenoweth, J. & Miller, G. Estimating the direct and indirect water use of tourism in the eastern Mediterranean. J. Environ. Manag. 114, 548–556. https://doi.org/10.1016/j.jenvman.2012.11.002 (2013).

    Article 

    Google Scholar 

  • 15.

    Annis, G. M. et al. Designing coastal conservation to deliver ecosystem and human well-being benefits. PLoS ONE 12(2), 1–21. https://doi.org/10.1371/journal.pone.0172458 (2017).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Kizielewicz, J. & Lukovic, T. The phenomenon of the marina development to support the European model of economic development. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 7(3), 461–466. https://doi.org/10.12716/1001.07.03.19 (2013).

    Article 

    Google Scholar 

  • 17.

    Ridolfi, E., Pujol, D. S., Ippolito, A., Saradakou, E. & Salvati, L. An urban political ecology approach to local development in fast-growing, tourism-specialized coastal cities. Tourismos 12(1), 171–204 (2017).

    Google Scholar 

  • 18.

    Sevinç, F. & Güzel, T. Sustainable Yacht tourism practices. Manag. Mark. XV(1), 61–76 (2017).

    Google Scholar 

  • 19.

    Lam-González, Y. E., León, C. J. & González-Hernández, M. M. Determinants of the European Yachtsmen´s satisfaction with the ports of call of the Canary Islands (Spain). Études Caribéennes https://doi.org/10.4000/etudescaribeennes.10584 (2017).

    Article 

    Google Scholar 

  • 20.

    Novales, A., Martínez Martín, M. I., Castro Núñez, R. B., Cazcarro Castellano, I. & Santero Sánchez, R. El impacto económico de la Náutica de Recreo 99 (Universidad Complutense de Madrid, 2018).

    Google Scholar 

  • 21.

    Cámara de Comercio e Industria de Marsella. Náutica de recreo en el Mediterráneo 114 (Etinet, 2011).

    Google Scholar 

  • 22.

    Mensa, J. A., Vasallo, P. & Fabiano, M. JMarinas: a simple tool for the environmentally sound management of small marinas. J. Environ. Manag. 92, 67–77 (2011).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Benton, T. G. From castaways to throwaways: marine litter in the Pitcairn Islands. Biol. J. Lin. Soc. 56, 415–422 (1995).

    Article 

    Google Scholar 

  • 24.

    Chainho, P. et al. Non-indigenous species in Portuguese coastal areas, coastal lagoons, estuaries and islands. Estuar. Coast. Shelf Sci. 167, 199–211. https://doi.org/10.1016/j.ecss.2015.06.019 (2015).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Styhre, L., Winnes, H., Black, J., Lee, J. & Le-Griffin, H. Greenhouse gas emissions from ships in ports: case studies in four continents. Transp. Res. Part D Transp. Environ. 54, 212–224. https://doi.org/10.1016/j.trd.2017.04.033 (2017).

    Article 

    Google Scholar 

  • 26.

    Yang, Y. C. Operating strategies of CO2 reduction for a container terminal based on carbon footprint perspective. J. Clean. Prod. 141, 472–480. https://doi.org/10.1016/j.jclepro.2016.09.132 (2017).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Giunta, M., Bressi, S. & D’Angelo, G. Life cycle cost assessment of bitumen stabilised ballast: a novel maintenance strategy for railway track-bed. Constr. Build. Mater. 172, 751–759. https://doi.org/10.1016/j.conbuildmat.2018.04.020 (2018).

    Article 

    Google Scholar 

  • 28.

    Hickmann, T. Voluntary global business initiatives and the international climate negotiations: a case study of the Greenhouse Gas Protocol. J. Clean. Prod. 169, 94–104. https://doi.org/10.1016/j.jclepro.2017.06.183 (2017).

    Article 

    Google Scholar 

  • 29.

    Garcia, R. & Freire, F. Carbon footprint of particleboard: a comparison between ISO/TS 14067, GHG protocol, PAS 2050 and climate declaration. J. Clean. Prod. 66, 199–209. https://doi.org/10.1016/j.jclepro.2013.11.073 (2014).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Ingrid, M.-M., Pablo, C.-M., Jose, V.-C. & Miguel Ángel, P.-G. Economic impact of a port on the hinterland: application to Santander’s port. Int. J. Shipp. Transp. Logist. 4, 235–249 (2012).

    Article 

    Google Scholar 

  • 31.

    Abdul-azeez, I. A. Development of carbon dioxide emission assessment tool towards promoting sustainability in UTM Malaysia. Open J. Energy Effic. https://doi.org/10.4236/ojee.2018.72004 (2018).

    Article 

    Google Scholar 

  • 32.

    Jeswani, H. K. & Azapagic, A. Water footprint: methodologies and a case study for assessing the impacts of water use. J. Clean. Prod. 19(12), 1288–1299. https://doi.org/10.1016/j.jclepro.2011.04.003 (2011).

    Article 

    Google Scholar 

  • 33.

    Zhuo, La., Mekonnen, M. M. & Hoekstra, A. Y. Consumptive water footprint and virtual water trade scenarios for China: with a focus on crop production, consumption and trade. Environ. Int. 94, 211–223 (2016).

    Article 

    Google Scholar 

  • 34.

    Arto, I., Andreoni, V. & Rueda-Cantuche, J. M. Global use of water resources: a multiregional analysis of water use, water footprint and water trade balance. Water Resour. Econ. 15, 1–14. https://doi.org/10.1016/j.wre.2016.04.002 (2016).

    Article 

    Google Scholar 

  • 35.

    Zhi, Y., Yang, Z., Yin, X., Hamilton, P. B. & Zhang, L. Using gray water footprint to verify economic sectors’ consumption of assimilative capacity in a river basin: model and a case study in the Haihe River Basin, China. J. Clean. Prod. 92, 267–273. https://doi.org/10.1016/j.jclepro.2014.12.058 (2015).

    Article 

    Google Scholar 

  • 36.

    Norén, A., Karlfeldt Fedje, K., Strömvall, A. M., Rauch, S. & Andersson-Sköld, Y. Integrated assessment of management strategies for metal-contaminated dredged sediments: what are the best approaches for ports, marinas and waterways?. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135510 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 37.

    Kenworthy, J. M., Rolland, G., Samadi, S. & Lejeusne, C. Local variation within marinas: effects of pollutants and implications for invasive species. Mar. Pollut. Bull. 133(March), 96–106. https://doi.org/10.1016/j.marpolbul.2018.05.001 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Veettil, A. V. & Mishra, A. K. Water security assessment using blue and green water footprint concepts. J. Hydrol. 542, 589–602. https://doi.org/10.1016/j.jhydrol.2016.09.032 (2016).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Gu, Y., Li, Y., Wang, H. & Li, F. Gray water footprint: taking quality, quantity, and time effect into consideration. Water Resour. Manag. 28(11), 3871–3874. https://doi.org/10.1007/s11269-014-0695-y (2014).

    Article 

    Google Scholar 

  • 40.

    Duvat, V. K. E. et al. Trajectories of exposure and vulnerability of small islands to climate change. Rev. Clim. Change https://doi.org/10.1002/wcc.478 (2017).

    Article 

    Google Scholar 

  • 41.

    Millán, M. M. Extreme hydrometeorological events and climate change predictions in Europe. J. Hydrol. 518(PB), 206–224. https://doi.org/10.1016/j.jhydrol.2013.12.041 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 42.

    Smith, J. B. et al. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “‘reasons for concern’”. Proc. Natl. Acad. Sci. U.S.A. 106(11), 4133–4137. https://doi.org/10.1073/pnas.0812355106 (2009).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    IPCC. Climate change 2014: impacts, adaptation and vulnerability (2014).

  • 44.

    Ciscar, J. C. et al. Physical and economic consequences of climate change in Europe. Proc. Natl. Acad. Sci. U.S.A. 108(7), 2678–2683. https://doi.org/10.1073/pnas.1011612108 (2011).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Melo, N., Santos, B. F. & Leandro, J. A prototype tool for dynamic pluvial-flood emergency planning. Urban Water J. 12(1), 79–88. https://doi.org/10.1080/1573062X.2014.975725 (2015).

    Article 

    Google Scholar 

  • 46.

    Lazrus, H. Sea change: Island communities and climate change. Annu. Rev. Anthropol. 41, 285–301. https://doi.org/10.1146/annurev-anthro-092611-145730 (2012).

    Article 

    Google Scholar 

  • 47.

    Reid, S., Johnston, N. & Patiar, A. Coastal resorts setting the pace: an evaluation of sustainable hotel practices. J. Hosp. Tour. Manag. 33, 11–22. https://doi.org/10.1016/j.jhtm.2017.07.001 (2017).

    Article 

    Google Scholar 

  • 48.

    Vargas-Amelin, E. & Pindado, P. The challenge of climate change in Spain: water resources, agriculture and land. J. Hydrol. 518(PB), 243–249. https://doi.org/10.1016/j.jhydrol.2013.11.035 (2014).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Fagerberg, J., Laestadius, S. & Martin, B. R. The triple challenge for Europe: the economy, climate change, and governance. Innov. Econ. Dev. Policy Sel. Essays 59(3), 384–410. https://doi.org/10.1080/05775132.2016.1171668 (2018).

    Article 

    Google Scholar 

  • 50.

    UNCTAD. Maritime transport in small island developing states. Rev. Marit. Transp. https://doi.org/10.1017/CBO9781107415324.004 (2014).

    Article 

    Google Scholar 

  • 51.

    Hinkey, L. M., Zaidi, B. R., Volson, B. & Rodriguez, N. J. Identifying sources and distributions of sediment contaminants at two US Virgin Islands marinas. Mar. Pollut. Bull. 50, 1244–1250. https://doi.org/10.1016/j.marpolbul.2005.04.035 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Marín, J. C. et al. Properties of particulate pollution in the port city of Valparaiso, Chile. Atmos. Environ. 171, 301–316. https://doi.org/10.1016/j.atmosenv.2017.09.044 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 53.

    Tóvar-Sánchez, A., Sánchez-Quiles, D. & Rodríguez-Romero, A. Massive coastal tourism influx to the Mediterranean Sea: the environmental risk of sunscreens. Sci. Total Environ. 656, 316–321 (2019).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Uche-Soria, M. & Rodríguez-Monroy, C. Solutions to marine pollution in Canary Islands’ ports: alternatives and optimization of energy management. Resources https://doi.org/10.3390/resources8020059 (2019).

    Article 

    Google Scholar 

  • 55.

    Bosch, N. E., Gonçalves, J. M. S., Tuya, F. & Erzini, K. Marinas as habitats for nearshore fish assemblages: comparative analysis of underwater visual census, baited cameras and fish traps. Sci. Mar. 81(2), 159. https://doi.org/10.3989/scimar.04540.20a (2017).

    Article 

    Google Scholar 

  • 56.

    Di Franco, A. et al. Do small marinas drive habitat specific impacts? A case study from Mediterranean Sea. Mar. Pollut. Bull. 62, 926–933. https://doi.org/10.1016/j.marpolbul.2011.02.053 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Pasetto, M. & Partl, M. N. in Lecture Notes in Civil Engineering Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE). http://www.springer.com/series/15087 (2020)

  • 58.

    Praticò, F. G., Giunta, M., Mistretta, M. & Gulotta, T. M. Energy and environmental life cycle assessment of sustainable pavement materials and technologies for urban roads. Sustainability (Switzerland) https://doi.org/10.3390/su12020704 (2020).

    Article 

    Google Scholar 

  • 59.

    Hertwich, E. G. & Wood, R. The growing importance of scope 3 greenhouse gas emissions from industry. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aae19a (2018).

    Article 

    Google Scholar 

  • 60.

    Di Vaio, A., Varriale, L. & Alvino, F. Key performance indicators for developing environmentally sustainable and energy efficient ports: evidence from Italy. Energy Policy 122(July), 229–240. https://doi.org/10.1016/j.enpol.2018.07.046 (2018).

    Article 

    Google Scholar 

  • 61.

    Corrigan, S., Kay, A., Ryan, M., Brazil, B. & Ward, M. E. Human factors & safety culture: challenges & opportunities for the port environment. Saf. Sci. 125, 14. https://doi.org/10.1016/j.ssci.2018.02.030 (2020).

    Article 

    Google Scholar 

  • 62.

    Mali, M., Dell’Anna, M. M., Mastrorilli, P., Damiani, L. & Piccinni, A. F. Assessment and source identification of pollution risk for touristic ports: heavy metals and polycyclic aromatic hydrocarbons in sediments of 4 marinas of the Apulia region (Italy). Mar. Pollut. Bull. 114(2), 768–777. https://doi.org/10.1016/j.marpolbul.2016.10.063 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 63.

    Cutroneo, L., Reboa, A., Besio, G., Borgogno, F., Canesi, L., Canuto, S., Dara, M., Enrile, F., Forioso, I., Greco, G., Lenoble, V., Malatesta, A., Mounier, S., Petrillo, M., Rovetta, R., Stocchino, A., Tesan, J., Vagge, G., & Capello, M. Correction to: Microplastics in seawater: sampling strategies, laboratory methodologies, and identification techniques applied to port environment (Environmental Science and Pollution Research, (2020), 27, 9, (8938–8952), https://doi.org/10.1007/s11356-020-07783-8). Environ. Sci. Pollut. Res. 27(16), 20571. https://doi.org/https://doi.org/10.1007/s11356-020-08704-5 (2020)

  • 64.

    Kotowska, I. & Kubowicz, D. The role of ports in reduction of road transport pollution in port cities. Transp. Res. Procedia 39, 212–220. https://doi.org/10.1016/j.trpro.2019.06.023 (2019).

    Article 

    Google Scholar 

  • 65.

    Coronado Mondragon, A. E., Lalwani, C. S., Coronado Mondragon, E. S., Coronado Mondragon, C. E. & Pawar, K. S. Intelligent transport systems in multimodal logistics: a case of role and contribution through wireless vehicular networks in a sea port location. Int. J. Prod. Econ. 137, 165–175. https://doi.org/10.1016/j.ijpe.2011.11.006 (2012).

    Article 

    Google Scholar 

  • 66.

    Caballini, C., Rebecchi, I. & Sacone, S. Combining multiple trips in a port environment for empty movements minimization. Transp. Res. Procedia 10, 694–703. https://doi.org/10.1016/j.trpro.2015.09.023 (2015).

    Article 

    Google Scholar 

  • 67.

    Sifakis, N. & Tsoutsos, T. Planning zero-emissions ports through the nearly zero energy port concept. J. Clean. Prod. 286, 20. https://doi.org/10.1016/j.jclepro.2020.125448 (2021).

    Article 

    Google Scholar 

  • 68.

    Karimpour, R., Ballini, F. & Ölcer, A. I. Circular economy approach to facilitate the transition of the port cities into self-sustainable energy ports: a case study in Copenhagen-Malmö Port (CMP). WMU J. Marit. Aff. 18(2), 225–247. https://doi.org/10.1007/s13437-019-00170-2 (2019).

    Article 

    Google Scholar 

  • 69.

    Babrowski, S., Heinrichs, H., Jochem, P. & Fichtner, W. Load shift potential of electric vehicles in Europe. J. Power Sources 255, 283–293. https://doi.org/10.1016/j.jpowsour.2014.01.019 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 70.

    Azarkamand, S., Ferré, G. & Darbra, R. M. Calculating the carbon footprint in ports by using a standardized tool. Sci. Total Environ. 734, 139407. https://doi.org/10.1016/j.scitotenv.2020.139407 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 71.

    Carballo-Penela, A., Mateo-Mantecón, I., Doménech, J. L. & Coto-Millán, P. From the motorways of the sea to the green corridors’ carbon footprint: the case of a port in Spain. J. Environ. Plan. Manag. 55(6), 765–782. https://doi.org/10.1080/09640568.2011.627422 (2012).

    Article 

    Google Scholar 

  • 72.

    Paska, J. & Surma, T. Electricity generation from renewable energy sources in Poland. Renew. Energy 71, 286–294 (2014).

    Article 

    Google Scholar 

  • 73.

    Trujillo-Baute, E., del Río, P. & Mir-Artigues, P. Analysing the impact of renewable energy regulation on retail electricity prices. Energy Policy 114, 153–164 (2018).

    Article 

    Google Scholar 

  • 74.

    Ruiz-Romero, S., Colmenar-Santos, A., Gil-Ortego, R. & Molina-Bonilla, A. Distributed generation: the definitive boost for renewable energy in Spain. Renew. Energy 53, 354–364 (2013).

    Article 

    Google Scholar 

  • 75.

    Burgos-Payán, M., Roldán-Fernández, J. M., Trigo-García, Á. L., Bermúdez-Ríos, J. M. & Riquelme-Santos, J. M. Costs and benefits of the renewable production of electricity in Spain. Energy Policy 56, 259–270 (2013).

    Article 

    Google Scholar 

  • 76.

    Taliotis, C. et al. Renewable energy technology integration for the island of Cyprus: a cost-optimization approach. Energy 137(2017), 31–41. https://doi.org/10.1016/j.energy.2017.07.015 (2017).

    Article 

    Google Scholar 

  • 77.

    Deyà-Tortella, B., Garcia, C., Nilsson, W. & Tirado, D. The effect of the water tariff structures on the water consumption in Mallorcan hotels. Water Resour. Res. 52(8), 6386–6403. https://doi.org/10.1002/2016WR018621 (2016).

    ADS 
    Article 

    Google Scholar 

  • 78.

    Liu, J. et al. A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use. PLoS ONE https://doi.org/10.1371/journal.pone.0057750 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Hof, A. & Schmitt, T. Urban and tourist land use patterns and water consumption: evidence from Mallorca, Balearic Islands. Land Use Policy 28, 792–804 (2011).

    Article 

    Google Scholar 

  • 80.

    Urban water consumption in the Balearic islands. The water portal: http://www.caib.es/sites/aigua/es/consumo_agua/

  • 81.

    García, C., Mestre-Runge, C., Morán-Tejeda, E., Lorenzo-Lacruz, J., Tirado, D. (2020). Impact of Cruise Activity on Freshwater Use in the Port of Palma (Mallorca, Spain): Water 12, 1088.

  • 82.

    Yves Tramblay, Aristeidis Koutroulis, Luis Samaniego, Sergio Vicente-Serrano, Florence Volaire, et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. EarthScience Reviews, Elsevier, 2020, 210, pp.103348. https://doi.org/10.1016/j.earscirev.2020.103348f


  • Source: Ecology - nature.com

    On course to create a fusion power plant

    Robotic solution for disinfecting food production plants wins agribusiness prize