in

Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning

  • 1.

    Díaz, S. et al. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Nat. Resour. Environ. 34, (2020).

  • 2.

    Laureto, L. M. O., Cianciaruso, M. V. & Samia, D. S. M. Functional diversity: an overview of its history and applicability. Nat. Conserv. 13, 112–116 (2015).

    Article 

    Google Scholar 

  • 3.

    Gilbey, J. et al. Life in a drop: Sampling environmental DNA for marine fishery management and ecosystem monitoring. Mar. Policy 124, 104331 (2021).

    Article 

    Google Scholar 

  • 4.

    de Chazal, J. & Rounsevell, M. D. A. Land-use and climate change within assessments of biodiversity change: a review. Glob. Environ. Chang. 19, 306–315 (2009).

    Article 

    Google Scholar 

  • 5.

    Benayas, J. M. R., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325, 1121–1124 (2009).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Leibold, M. A. & Miller, T. E. in Ecology, Genetics and Evolution of Metapopulations (eds Hanski, I. & Gaggiotti, O. E.) 133–150 (Elsevier Academic Pres, 2004).

  • 8.

    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).

    Article 

    Google Scholar 

  • 9.

    Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92, 1573–1581 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Young, R. G. & Collier, K. J. Contrasting responses to catchment modification among a range of functional and structural indicators of river ecosystem health. Freshw. Biol. 54, 2155–2170 (2009).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).

    Article 

    Google Scholar 

  • 14.

    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).

    Article 

    Google Scholar 

  • 15.

    de Oliveira, S. S. et al. Higher taxa are sufficient to represent biodiversity patterns. Ecol. Indic. 111, 105994 (2020).

    Article 

    Google Scholar 

  • 16.

    Seymour, M. et al. Executing multi-taxa eDNA ecological assessment via traditional metrics and interactive networks. Sci. Total Environ. 729, 138801 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Boivin-Delisle, D. et al. Using environmental DNA for biomonitoring of freshwater fish communities: Comparison with established gillnet surveys in a boreal hydroelectric impoundment. Environ. DNA 3, 105–120 (2020).

  • 18.

    Sepulveda, A. J., Nelson, N. M., Jerde, C. L. & Luikart, G. Are environmental DNA methods ready for aquatic invasive species management? Trends Ecol. Evol. 35, 668–678 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Beng, K. C. & Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers. Conserv. 29, 2089–2121 (2020).

    Article 

    Google Scholar 

  • 20.

    Rees, H. C., Gough, K. C., Middleditch, D. J., Patmore, J. R. M. & Maddison, B. C. Applications and limitations of measuring environmental DNA as indicators of the presence of aquatic animals. J. Appl. Ecol. 52, 827–831 (2015).

    Article 

    Google Scholar 

  • 21.

    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 22.

    Seymour, M. Rapid progression and future of environmental DNA research. Commun. Biol 2, 80 (2019).

    Google Scholar 

  • 23.

    Jo, T., Arimoto, M., Murakami, H., Masuda, R. & Minamoto, T. Particle size distribution of environmental DNA from the nuclei of marine fish. Environ. Sci. Technol. 53, 9947–9956 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Moushomi, R., Wilgar, G., Carvalho, G., Creer, S. & Seymour, M. Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular. Sci. Rep. 9, 12500 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A. & Boehm, A. B. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environ. Sci. Technol. 50, 10456–10464 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Sales, N. G. et al. Fishing for mammals: landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems. J. Appl. Ecol. 57, 707–716 (2020).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Riascos, L. et al. DNA-based monitoring of the alien invasive North American crayfish Procambarus clarkii in Andean lakes (Ecuador). Limnologica 70, 20–25 (2018).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Bista, I. et al. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nat. Commun. 8, 14087 (2017).

  • 29.

    Hänfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101–3119 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Crookes, S. et al. Monitoring the silver carp invasion in Africa: a case study using environmental DNA (eDNA) in dangerous watersheds. NeoBiota 56, 31–47 (2020).

    Article 

    Google Scholar 

  • 31.

    Sigsgaard, E. E. et al. Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. Conserv. Biol. 34, 697–710 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Holman, L. E., Hollenbeck, C. M., Ashton, T. J. & Johnston, I. A. Demonstration of the use of environmental DNA for the non-invasive genotyping of a Bivalve Mollusk, the European Flat Oyster (Ostrea edulis). Front. Genet. 10, 1159 (2019). vol.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Cindy, B. et al. Passive eDNA collection enhances aquatic biodiversity analysis. Commun. Biol. 4, 236 (2021).

    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    Article 

    Google Scholar 

  • 35.

    Seymour, M., Fronhofer, E. A. & Altermatt, F. Dendritic network structure and dispersal affect temporal dynamics of diversity and species persistence. Oikos 124, 908–916 (2015).

    Article 

    Google Scholar 

  • 36.

    Seymour, M., Deiner, K. & Altermatt, F. Scale and scope matter when explaining varying patterns of community diversity in riverine metacommunities. Basic Appl. Ecol. 17, 134–144 (2016).

    Article 

    Google Scholar 

  • 37.

    Haase, P., Pauls, S. U., Schindehütte, K. & Sundermann, A. First audit of macroinvertebrate samples from an EU Water Framework Directive monitoring program: human error greatly lowers precision of assessment results. J. North Am. Benthol. Soc. 29, 1279–1291 (2010).

    Article 

    Google Scholar 

  • 38.

    Altermatt, F., Seymour, M. & Martinez, N. River network properties shape α-diversity and community similarity patterns of aquatic insect communities across major drainage basins. J. Biogeogr. 40, 2249–2260 (2013).

    Article 

    Google Scholar 

  • 39.

    Miserendino, M. L. & Masi, C. I. The effects of land use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. Ecol. Indic. 10, 311–319 (2010).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Wallace, J. B. & Webster, J. R. The role of macroinvertebrates in stream ecosystem function. Annu. Rev. Entomol. 41, 115–139 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Barbour, M. T., Gerritsen, J., Snyder, B. D. & Stribling, J. B. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Vol. 339 (US Environmental Protection Agency, Office of Water, 1999).

  • 42.

    Seymour, M. et al. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Commun. Biol. 1, 4 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Milner, A. M., Robertson, A. L., Monaghan, K. A., Veal, A. J. & Flory, E. A. Colonization and development of an Alaskan stream community over 28 years. Front. Ecol. Environ. 6, 413–419 (2008).

    Article 

    Google Scholar 

  • 44.

    Álvarez-Cabria, M., Barquín, J. & Antonio Juanes, J. Spatial and seasonal variability of macroinvertebrate metrics: do macroinvertebrate communities track river health? Ecol. Indic. 10, 370–379 (2010).

    Article 
    CAS 

    Google Scholar 

  • 45.

    Macher, J.-N. et al. Comparison of environmental DNA and bulk-sample metabarcoding using highly degenerate cytochrome c oxidase I primers. Mol. Ecol. Resour. 18, 1456–1468 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Pereira-da-Conceicoa, L. et al. Metabarcoding unsorted kick-samples facilitates macroinvertebrate-based biomonitoring with increased taxonomic resolution, while outperforming environmental DNA. bioRxiv https://doi.org/10.1101/792333 (2019).

  • 47.

    Leese, F. et al. Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. Environ. DNA https://doi.org/10.1101/2020.04.27.063545 (2020).

  • 48.

    Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E. & Rinaldo, A. Estimating species distribution and abundance in river networks using environmental DNA. Proc. Natl Acad. Sci. 115, 11724 LP–11711729 (2018).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Bussi, G. et al. Climate and land-use change impact on faecal indicator bacteria in a temperate maritime catchment (the River Conwy, Wales). J. Hydrol. 553, 248–261 (2017).

    Article 

    Google Scholar 

  • 50.

    Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Harvey, E., Gounand, I., Fronhofer, E. A. & Altermatt, F. Disturbance reverses classic biodiversity predictions in river-like landscapes. Proc. R. Soc. B Biol. Sci. 285, 20182441 (2018).

    Article 

    Google Scholar 

  • 52.

    Townsend, C. R., Scarsbrook, M. R. & Dolédec, S. The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnol. Oceanogr. 42, 938–949 (1997).

    Article 

    Google Scholar 

  • 53.

    Cummins, K. W. & Klug, M. J. Feeding ecology of stream invertebrates. Annu. Rev. Ecol. Syst. 10, 147–172 (1979).

    Article 

    Google Scholar 

  • 54.

    Wallace, J., Hutchens John, J. & Grubaugh, J. in Methods in Stream Ecology 249–271 https://doi.org/10.1016/B978-012332908-0.50014-0 (2007).

  • 55.

    Erman, D. C. & Chouteau, W. C. Fine Particulate Organic Carbon Output from Fens and Its Effect on Benthic Macroinvertebrates. Oikos 32, 409–415 (1979).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Hart, D. D. & Robinson, C. T. Resource limitation in a stream community: phosphorus enrichment effects on Periphyton and Grazers. Ecology 71, 1494–1502 (1990).

    Article 

    Google Scholar 

  • 57.

    Finn, D. S., Bonada, N., Múrria, C. & Hughes, J. M. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. J. North Am. Benthol. Soc. 30, 963–980 (2011).

    Article 

    Google Scholar 

  • 58.

    Mächler, E., Deiner, K., Spahn, F. & Altermatt, F. Fishing in the Water: Effect of Sampled Water Volume on Environmental DNA-Based Detection of Macroinvertebrates. Environ. Sci. Technol. 50, 305–312 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 59.

    Agency, E. River Habitat Survey in Britain and Ireland: Field Survey Guidance Manual: 2003 Version (Forest Research, 2003).

  • 60.

    Spens, J. et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods Ecol. Evol. 8, 635–645 (2017).

    Article 

    Google Scholar 

  • 61.

    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 62.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 63.

    Schmieder, R., Lim, Y. W., Rohwer, F. & Edwards, R. TagCleaner: identification and removal of tag sequences from genomic and metagenomic datasets. BMC Bioinform 11, 341 (2010).

    Article 
    CAS 

    Google Scholar 

  • 64.

    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv https://doi.org/10.1101/081257 (2016).

  • 65.

    Coordinators, N. R. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 44, D7–D19 (2016).

    Article 
    CAS 

    Google Scholar 

  • 66.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 67.

    Pinheiro, J. C. & Bates, D. M. Mixed-effects Models in S and S-plus (Springer, 2000).

  • 68.

    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2011).

  • 69.

    Seymour, M. Conwy eDNA data. https://doi.org/10.6084/m9.figshare.14159579.v1 (2021).


  • Source: Ecology - nature.com

    Robotic solution for disinfecting food production plants wins agribusiness prize

    Undergraduates explore practical applications of artificial intelligence