in

Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands

  • 1.

    Stocker, T. F. et al. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change (Cambridge University Press, 2014).

  • 2.

    IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).

  • 3.

    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. 110, 19456–19459 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    DeMalach, N., Zaady, E. & Kadmon, R. Contrasting effects of water and nutrient additions on grassland communities: a global meta‐analysis. Glob. Ecol. Biogeogr. 26, 983–992 (2017).

    Article 

    Google Scholar 

  • 6.

    Gruner, D. S. et al. Effects of experimental warming on biodiversity depend on ecosystem type and local species composition. Oikos 126, 8–17 (2017).

    Article 

    Google Scholar 

  • 7.

    Komatsu, K. J. et al. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proc. Natl Acad. Sci. 116, 17867–17873 (2019).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Korell, L., Auge, H., Chase, J. M., Harpole, S. & Knight, T. M. We need more realistic climate change experiments for understanding ecosystems of the future. Glob. Change Biol. 26, 325–327 (2020).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. Understanding plant communities of the future requires filling knowledge gaps. Glob. Change Biol. 26, 328–329 (2020).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Yue, K. et al. Changes in plant diversity and its relationship with productivity in response to nitrogen addition, warming and increased rainfall. Oikos 129, 939–952 (2020).

  • 11.

    Chase, J. M. & Knight, T. M. Scale‐dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).

    Article 

    Google Scholar 

  • 12.

    Chase, J. M. et al. Embracing scale‐dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).

    Article 

    Google Scholar 

  • 13.

    Spake, R. et al. Implications of scale dependence for cross‐study syntheses of biodiversity differences. Ecol. Lett. 24, 374–390 (2020).

    Article 

    Google Scholar 

  • 14.

    Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. 117, 4464–4470 (2020).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Wilcox, K. R. et al. Asymmetric responses of primary productivity to precipitation extremes: a synthesis of grassland precipitation manipulation experiments. Glob. Change Biol. 23, 4376–4385 (2017).

    Article 

    Google Scholar 

  • 17.

    Beier, C. et al. Precipitation manipulation experiments–challenges and recommendations for the future. Ecol. Lett. 15, 899–911 (2012).

    Article 

    Google Scholar 

  • 18.

    Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Knapp, A. K. et al. Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Glob. Change Biol. 21, 2624–2633 (2015).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).

    Article 

    Google Scholar 

  • 21.

    Stuart-Haëntjens, E. et al. Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Sci. Total Environ. 636, 360–366 (2018).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Adler, P. B. et al. Productivity is a poor predictor of plant species richness. Science 333, 1750–1753 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 23.

    Van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    PubMed 

    Google Scholar 

  • 24.

    Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity–biodiversity relationship. Nature 416, 427–430 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Thompson, P. L., Isbell, F., Loreau, M., O’connor, M. I. & Gonzalez, A. The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc. R. Soc. B 285, 20180038 (2018).

    Article 

    Google Scholar 

  • 26.

    Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).

    Article 

    Google Scholar 

  • 27.

    McCluney, K. E. et al. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biol. Rev. 87, 563–582 (2012).

    Article 

    Google Scholar 

  • 28.

    Brooker, R. W. Plant–plant interactions and environmental change. New Phytol. 171, 271–284 (2006).

    Article 

    Google Scholar 

  • 29.

    Maron, J. L., Baer, K. C. & Angert, A. L. Disentangling the drivers of context‐dependent plant–animal interactions. J. Ecol. 102, 1485–1496 (2014).

    Article 

    Google Scholar 

  • 30.

    Harpole, W. S. et al. Addition of multiple limiting resources reduces grassland diversity. Nature 537, 93–96 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Safriel, U. et al. in Ecosystems and Human Well-being: Current State and Trends.: Findings of the Condition and Trends Working Group (Island Press, 2005).

  • 34.

    Hoover, D. L. et al. Traversing the wasteland: a framework for assessing ecological threats to drylands. BioScience 70, 35–47 (2020).

    Article 

    Google Scholar 

  • 35.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article 

    Google Scholar 

  • 36.

    McGlinn, D. J. et al. Measurement of Biodiversity (MoB): a method to separate the scale‐dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods Ecol. Evolution 10, 258–269 (2019).

    Article 

    Google Scholar 

  • 37.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article 

    Google Scholar 

  • 38.

    Hurlbert, S. H. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586 (1971).

    Article 

    Google Scholar 

  • 39.

    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Article 

    Google Scholar 

  • 40.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evolution 7, 1451–1456 (2016).

    Article 

    Google Scholar 

  • 41.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6 (2019).

  • 42.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article 

    Google Scholar 

  • 43.

    Bates, D. et al. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).

  • 44.

    Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17 (2020).

  • 45.

    Canty, A. & Ripley, B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3–25 (2020).

  • 46.

    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).

  • 47.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • 48.

    Fox, J. et al. Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots and Partial Residuals. J. Stat. Softw. 87, 1–27 (2018).

  • 49.

    Gelman, A.& Su, Y. arm: Data Analysis Using Regression and Multilevel/Hierarchical Models. R package version 1.11–2 (2020).


  • Source: Ecology - nature.com

    Robotic solution for disinfecting food production plants wins agribusiness prize

    Undergraduates explore practical applications of artificial intelligence