Stocker, T. F. et al. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change (Cambridge University Press, 2014).
IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).
Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).
Google Scholar
Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. 110, 19456–19459 (2013).
Google Scholar
DeMalach, N., Zaady, E. & Kadmon, R. Contrasting effects of water and nutrient additions on grassland communities: a global meta‐analysis. Glob. Ecol. Biogeogr. 26, 983–992 (2017).
Google Scholar
Gruner, D. S. et al. Effects of experimental warming on biodiversity depend on ecosystem type and local species composition. Oikos 126, 8–17 (2017).
Google Scholar
Komatsu, K. J. et al. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proc. Natl Acad. Sci. 116, 17867–17873 (2019).
Google Scholar
Korell, L., Auge, H., Chase, J. M., Harpole, S. & Knight, T. M. We need more realistic climate change experiments for understanding ecosystems of the future. Glob. Change Biol. 26, 325–327 (2020).
Google Scholar
Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. Understanding plant communities of the future requires filling knowledge gaps. Glob. Change Biol. 26, 328–329 (2020).
Google Scholar
Yue, K. et al. Changes in plant diversity and its relationship with productivity in response to nitrogen addition, warming and increased rainfall. Oikos 129, 939–952 (2020).
Chase, J. M. & Knight, T. M. Scale‐dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).
Google Scholar
Chase, J. M. et al. Embracing scale‐dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).
Google Scholar
Spake, R. et al. Implications of scale dependence for cross‐study syntheses of biodiversity differences. Ecol. Lett. 24, 374–390 (2020).
Google Scholar
Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).
Google Scholar
Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. 117, 4464–4470 (2020).
Google Scholar
Wilcox, K. R. et al. Asymmetric responses of primary productivity to precipitation extremes: a synthesis of grassland precipitation manipulation experiments. Glob. Change Biol. 23, 4376–4385 (2017).
Google Scholar
Beier, C. et al. Precipitation manipulation experiments–challenges and recommendations for the future. Ecol. Lett. 15, 899–911 (2012).
Google Scholar
Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).
Google Scholar
Knapp, A. K. et al. Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Glob. Change Biol. 21, 2624–2633 (2015).
Google Scholar
Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).
Google Scholar
Stuart-Haëntjens, E. et al. Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Sci. Total Environ. 636, 360–366 (2018).
Google Scholar
Adler, P. B. et al. Productivity is a poor predictor of plant species richness. Science 333, 1750–1753 (2011).
Google Scholar
Van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).
Google Scholar
Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity–biodiversity relationship. Nature 416, 427–430 (2002).
Google Scholar
Thompson, P. L., Isbell, F., Loreau, M., O’connor, M. I. & Gonzalez, A. The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc. R. Soc. B 285, 20180038 (2018).
Google Scholar
Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).
Google Scholar
McCluney, K. E. et al. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biol. Rev. 87, 563–582 (2012).
Google Scholar
Brooker, R. W. Plant–plant interactions and environmental change. New Phytol. 171, 271–284 (2006).
Google Scholar
Maron, J. L., Baer, K. C. & Angert, A. L. Disentangling the drivers of context‐dependent plant–animal interactions. J. Ecol. 102, 1485–1496 (2014).
Google Scholar
Harpole, W. S. et al. Addition of multiple limiting resources reduces grassland diversity. Nature 537, 93–96 (2016).
Google Scholar
Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).
Google Scholar
Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).
Google Scholar
Safriel, U. et al. in Ecosystems and Human Well-being: Current State and Trends.: Findings of the Condition and Trends Working Group (Island Press, 2005).
Hoover, D. L. et al. Traversing the wasteland: a framework for assessing ecological threats to drylands. BioScience 70, 35–47 (2020).
Google Scholar
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
Google Scholar
McGlinn, D. J. et al. Measurement of Biodiversity (MoB): a method to separate the scale‐dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods Ecol. Evolution 10, 258–269 (2019).
Google Scholar
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
Google Scholar
Hurlbert, S. H. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586 (1971).
Google Scholar
Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).
Google Scholar
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evolution 7, 1451–1456 (2016).
Google Scholar
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6 (2019).
Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
Google Scholar
Bates, D. et al. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).
Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17 (2020).
Canty, A. & Ripley, B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3–25 (2020).
R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Fox, J. et al. Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots and Partial Residuals. J. Stat. Softw. 87, 1–27 (2018).
Gelman, A.& Su, Y. arm: Data Analysis Using Regression and Multilevel/Hierarchical Models. R package version 1.11–2 (2020).
Source: Ecology - nature.com