in

Adaptation to chronic drought modifies soil microbial community responses to phytohormones

  • 1.

    Bardgett, R. D. Plant-soil interactions in a changing world. F1000 Biol. Rep. 3, 16 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Faure, D., Vereecke, D. & Leveau, J. H. Molecular communication in the rhizosphere. Plant Soil 321, 279–303 (2009).

    CAS 
    Article 

    Google Scholar 

  • 3.

    de Zelicourt, A., Al-Yousif, M. & Hirt, H. Rhizosphere microbes as essential partners for plant stress tolerance. Mol. Plant 6, 242–245 (2013).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 4.

    Reynolds, H. L., Packer, A., Bever, J. D. & Clay, K. Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 84, 2281–2291 (2003).

    Article 

    Google Scholar 

  • 5.

    Jones, P., Garcia, B., Furches, A., Tuskan, G. & Jacobson, D. Plant host-associated mechanisms for microbial selection. Front. Plant Sci. 10, 862 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    de Vries, F. T. et al. Changes in root‐exudate‐induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. N. Phytol. 224, 132–145 (2019).

    Article 
    CAS 

    Google Scholar 

  • 7.

    Dodd, I. C., Zinovkina, N. Y., Safronova, V. I. & Belimov, A. A. Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 157, 361–379 (2010).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd-Allah, E. F. & Hashem, A. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front. Microbiol. 8, 2104 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Xu, L. & Coleman-Derr, D. Causes and consequences of a conserved bacterial root microbiome response to drought stress. Curr. Opin. Microbiol. 49, 1–6 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Wittenmeyer, L. & Merbach, W. Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes. J. Plant Nutr. Soil Sci. 168, 531–540 (2005).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Borghi, L., Kang, J., Ko, D., Lee, Y. & Martinoia, E. The role of ABCG-type ABC transporters in phytohormone transport. Biochem. Soc. Trans. 43, 924–930 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Gargallo-Garriga, A. et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8, 1–15 (2018).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Hamer, U. & Marschner, B. Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biol. Biochem. 37, 445–454 (2005).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Mondini, C., Cayuela, M. L., Sanchez-Monedero, M. A., Roig, A. & Brookes, P. C. Soil microbial biomass activation by trace amounts of readily available substrate. Biol. Fertil. Soils 42, 542–549 (2006).

    Article 

    Google Scholar 

  • 16.

    Hu, L. et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 1–13 (2018).

    Article 
    CAS 

    Google Scholar 

  • 17.

    Fahad, S. et al. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci. Pollut. Res. 22, 4907–4921 (2015).

    Article 

    Google Scholar 

  • 18.

    Speirs, J., Binney, A., Collins, M., Edwards, E. & Loveys, B. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon). J. Exp. Bot. 64, 1907–1916 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    McAdam, S. A., Brodribb, T. J. & Ross, J. J. Shoot‐derived abscisic acid promotes root growth. Plant Cell Environ. 39, 652–659 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Ibort, P., Molina, S., Ruiz-Lozano, J. M. & Aroca, R. Molecular insights into the involvement of a never ripe receptor in the interaction between two beneficial soil bacteria and tomato plants under well-watered and drought conditions. Mol. Plant Microbe Interact. 31, 633–650 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Timmusk, S. et al. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE 6, e17968 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Ghosh, D., Gupta, A. & Mohapatra, S. Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress. Symbiosis 77, 265–278 (2019).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Carvalhais, L. C., Dennis, P. G. & Schenk, P. M. Plant defence inducers rapidly influence the diversity of bacterial communities in a potting mix. Appl. Soil Ecol. 84, 1–5 (2014).

    Article 

    Google Scholar 

  • 24.

    Olds, C. L., Glennon, E. K. & Luckhart, S. Abscisic acid: new perspectives on an ancient universal stress signaling molecule. Microbes Infect. 20, 484–492 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Hartung, W., Sauter, A., Turner, N. C., Fillery, I. & Heilmeier, H. Abscisic acid in soils: what is its function and which factors and mechanisms influence its concentration? Plant Soil 184, 105–110 (1996).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Belimov, A. A. et al. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol. Biochem. 74, 84–91 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Glick, B. R., Penrose, D. M. & Li, J. P. A model for the lowering of plant ethylene concentrations by plant growth-promoting rhizobacteria. J. Theor. Biol. 190, 63–68 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Kazan, K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20, 219–229 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    de Ollas, C. & Dodd, I. C. Physiological impacts of ABA–JA interactions under water-limitation. Plant Mol. Biol. 91, 641–650 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Carvalhais, L. C. et al. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol. Plant Microbe Interact. 28, 1049–1058 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Ngumbi, E. & Kloepper, J. Bacterial-mediated drought tolerance: current and future prospects. Appl. Soil Ecol. 105, 109–125 (2016).

    Article 

    Google Scholar 

  • 32.

    Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. & SkZ, A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184, 13–24 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Kudoyarova, G. et al. Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Front. Plant Sci. 10, 1368 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Wallenstein, M. D. & Hall, E. K. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry 109, 35–47 (2012).

    Article 

    Google Scholar 

  • 35.

    Martiny, J. B. et al. Microbial legacies alter decomposition in response to simulated global change. ISME J. 11, 490–499 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Grime, J. P. et al. The response of two contrasting limestone grasslands to simulated climate change. Science 289, 762–765 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Fridley, J. D., Lynn, J. S., Grime, J. P. & Askew, A. P. Longer growing seasons shift grassland vegetation towards more-productive species. Nat. Clim. Change 6, 865–868 (2016).

    Article 

    Google Scholar 

  • 38.

    Sayer, E. J. et al. Links between soil microbial communities and plant traits in a species‐rich grassland under long‐term climate change. Ecol. Evol. 7, 855–862 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Trinder, S., Askew, A. P. & Whitlock, R. Climate‐driven evolutionary change in reproductive and early‐acting life‐history traits in the perennial grass Festuca ovina. J. Ecol. 108, 1398–1410 (2020).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Fridley, J. D., Grime, J. P., Askew, A. P., Moser, B. & Stevens, C. J. Soil heterogeneity buffers community response to climate change in species‐rich grassland. Glob. Change Biol. 17, 2002–2011 (2011).

    Article 

    Google Scholar 

  • 41.

    Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress‐response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Chanclud, E. & Morel, J. B. Plant hormones: a fungal point of view. Mol. Plant Pathol. 17, 1289–1297 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Sembdner, G. A. P. B. & Parthier, B. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Biol. 44, 569–589 (1993).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Eng, F. et al. Jasmonic acid biosynthesis by fungi: derivatives, first evidence on biochemical pathways and culture conditions for production. PeerJ 9, e10873 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Fuchslueger, L. et al. Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event. J. Ecol. 104, 1453–1465 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).

    Article 

    Google Scholar 

  • 49.

    Waring, B. G., Averill, C. & Hawkes, C. V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecol. Lett. 16, 887–894 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Staddon, P. L. et al. Mycorrhizal fungal abundance is affected by long‐term climatic manipulations in the field. Glob. Change Biol. 9, 186–194 (2003).

    Article 

    Google Scholar 

  • 51.

    Van Gestel, M., Merckx, R. & Vlassak, K. Microbial biomass responses to soil drying and rewetting: the fate of fast-and slow-growing microorganisms in soils from different climates. Soil Biol. Biochem. 25, 109–123 (1993).

    Article 

    Google Scholar 

  • 52.

    Belimov, A. A. et al. Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. N. Phytol. 181, 413–423 (2009).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K. & Niklińska, M. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann. Microbiol. 65, 1627–1637 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Kakumanu, M. L., Ma, L. & Williams, M. A. Drought-induced soil microbial amino acid and polysaccharide change and their implications for C-N cycles in a climate change world. Sci. Rep. 9, 1–12 (2019).

    CAS 

    Google Scholar 

  • 56.

    Puertolas, J., Alcobendas, R., Alarcón, J. J. & Dodd, I. C. Long‐distance abscisic acid signalling under different vertical soil moisture gradients depends on bulk root water potential and average soil water content in the root zone. Plant Cell Environ. 36, 1465–1475 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Axtell, C. A. & Beattie, G. A. Construction and characterization of a proU-gfp transcriptional fusion that measures water availability in a microbial habitat. Appl. Environ. Microbiol. 68, 4604–4612 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Wesener, F. & Tietjen, B. Primed to be strong, primed to be fast: modeling benefits of microbial stress responses. FEMS Microbiol. Ecol. 95, 114 (2019).

    Article 
    CAS 

    Google Scholar 

  • 59.

    Andrade‐Linares, D. R., Lehmann, A. & Rillig, M. C. Microbial stress priming: a meta‐analysis. Environ. Microbiol. 18, 1277–1288 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Grime, J. P. et al. Long-term resistance to simulated climate change in an infertile grassland. Proc. Natl Acad. Sci. USA 105, 10028–10032 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Giannetta, B., Plaza, C., Zaccone, C., Vischetti, C. & Rovira, P. Ecosystem type effects on the stabilization of organic matter in soils: combining size fractionation with sequential chemical extractions. Geoderma 353, 423–434 (2019).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Tworkoski, T., Wisniewski, M. & Artlip, T. Application of BABA and s-ABA for drought resistance in apple. J. Appl. Hortic. 13, 95–90 (2011).

    Article 

    Google Scholar 

  • 64.

    Rohwer, C. L. & Erwin, J. E. Horticultural applications of jasmonates: a review. J. Hortic. Sci. Biotechnol. 83, 283–304 (2008).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Creamer, R. E. et al. An inter-laboratory comparison of multi-enzyme and multiple substrate-induced respiration assays to assess method consistency in soil monitoring. Biol. Fertil. Soils 45, 623–633 (2009).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Stott, D. E. Recommended Soil Health Indicators and Associated Laboratory Procedures. Soil Health Technical Note No. 450-03. (U.S. Department of Agriculture, Natural Resources Conservation Service, 2019).

  • 67.

    Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61, 127–130 (2012).

    Article 

    Google Scholar 

  • 68.

    Bardgett, R. D. & McAlister, E. The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 29, 282–290 (1999).

    Article 

    Google Scholar 

  • 69.

    Bardgett, R. D., Hobbs, P. J. & Frostegård, Å. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils 22, 261–264 (1996).

    Article 

    Google Scholar 

  • 70.

    Zhu, Z. et al. Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil-part 2: turnover and microbial utilization. Plant Soil 416, 243–257 (2017).

    CAS 
    Article 

    Google Scholar 

  • 71.

    R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (R Foundation for Statistical Computing, 2019).

  • 72.

    Bates, D. M., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).

    Google Scholar 

  • 73.

    Cohen, J. The effect size index: d. Stat. Power Anal. Behav. Sci. 2, 284–288 (1988).

    Google Scholar 

  • 74.

    Anderson, T. H. & Domsch, A. K. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol. Biochem. 25, 393–395 (1993).

    Article 

    Google Scholar 

  • 75.

    Pinheiro, J.C., Bates, D.M. Mixed-Effects Models in S and S-PLUS (Springer, 2000).

  • 76.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 13 (2017).

    Article 

    Google Scholar 

  • 77.

    Sayer, E. J. et al. Data from: Adaptation to chronic drought modifies soil microbial community responses to phytohormones. figshare https://doi.org/10.6084/m9.figshare.14130065 (2021).


  • Source: Ecology - nature.com

    Robotic solution for disinfecting food production plants wins agribusiness prize

    Undergraduates explore practical applications of artificial intelligence