in

Plant scientists’ research attention is skewed towards colourful, conspicuous and broadly distributed flowers

  • 1.

    Schaal, B. Plants and people: our shared history and future. Plants People Planet 1, 14–19 (2019).

    Article 

    Google Scholar 

  • 2.

    Bates, D. M. People, plants and genes: the story of crops and humanity. Q. Rev. Biol. 84, 206–207 (2009).

  • 3.

    Nedelcheva, A., Dogan, Y., Obratov-Petkovic, D. & Padure, I. M. The traditional use of plants for handicrafts in southeastern Europe. Hum. Ecol. Interdiscip. J. 39, 813–828 (2011).

    Article 

    Google Scholar 

  • 4.

    Willes, M. A Shakespearean Botanical (Bodleian Library, 2015).

  • 5.

    Shoemaker, C. A. Plants and human culture. J. Home Consum. Hortic. 1, 3–7 (1994).

    Article 

    Google Scholar 

  • 6.

    Alfred, J. & Baldwin, I. T. The natural history of model organisms: new opportunities at the wild frontier. eLife 4, e06956 (2015).

    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Hedges, S. B. The origin and evolution of model organisms. Nat. Rev. Genet. 3, 838–849 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Clark, J. A. Taxonomic bias in conservation research. Science 297, 191–192 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Mammola, S. et al. Towards a taxonomically unbiased European Union biodiversity strategy for 2030. Proc. R. Soc. B 287, 20202166 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).

    Article 

    Google Scholar 

  • 11.

    Quijas, S., Schmid, B. & Balvanera, P. Plant diversity enhances provision of ecosystem services: a new synthesis. Basic Appl. Ecol. 11, 582–593 (2010).

    Article 

    Google Scholar 

  • 12.

    Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84, 2042–2050 (2003).

    Article 

    Google Scholar 

  • 13.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Ripple, W. J. et al. World scientists’ warning to humanity: a second notice. Bioscience 67, 1026–1028 (2017).

    Article 

    Google Scholar 

  • 16.

    Balding, M. & Williams, K. J. H. Plant blindness and the implications for plant conservation. Conserv. Biol. 30, 1192–1199 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Fukushima, C. S., Mammola, S. & Cardoso, P. Global wildlife trade permeates the Tree of Life. Biol. Conserv. 247, 108503 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Wandersee, J. H. & Schussler, E. E. Preventing plant blindness. Am. Biol. Teach. 61, 82–86 (1999).

    Article 

    Google Scholar 

  • 19.

    Parsley, K. M. Plant awareness disparity: a case for renaming plant blindness. Plants People Planet 2, 598–601 (2020).

    Article 

    Google Scholar 

  • 20.

    Villemant, C. et al. The Mercantour/Alpi Marittime All Taxa Biodiversity Inventory (ATBI): achievements and prospects. Zoosystema 37, 667–679 (2015).

    Article 

    Google Scholar 

  • 21.

    Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).

    Article 

    Google Scholar 

  • 22.

    Médail, F. & Verlaque, R. Ecological characteristics and rarity of endemic plants from Southeast France and Corsica: implications for biodiversity conservation. Biol. Conserv. 80, 269–281 (1997).

    Article 

    Google Scholar 

  • 23.

    Noble, V. & Diadema, K. in La flore des Alpes-Maritimes et de la Principauté de Monaco (eds Noble, V. & Diadema, K.) 57–72 (Naturalia, 2011).

  • 24.

    Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).

    Article 

    Google Scholar 

  • 25.

    Horiguchi, H., Winawer, J., Dougherty, R. F. & Wandell, B. A. Human trichromacy revisited. Proc. Natl Acad. Sci. USA 110, E260–E269 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Gerl, E. J. & Morris, M. R. The causes and consequences of color vision. Evol. Educ. Outreach 1, 476–486 (2008).

    Article 

    Google Scholar 

  • 27.

    Bompas, A., Kendall, G. & Sumner, P. Spotting fruit versus picking fruit as the selective advantage of human colour vision. i-Perception 4, 84–94 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Elliot, A. J. & Maier, M. A. Color psychology: effects of perceiving color on psychological functioning in humans. Annu. Rev. Psychol. 65, 95–120 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 29.

    Chiao, J. Y. et al. Dynamic cultural influences on neural representations of the self. J. Cogn. Neurosci. 22, 1–11 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 8, 15399 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Costa, G. C., Nogueira, C., Machado, R. B. & Colli, G. R. Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers. Conserv. 19, 883–899 (2010).

    Article 

    Google Scholar 

  • 32.

    Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. Camb. Philos. Soc. 92, 698–715 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    De Boeck, H. J., Liberloo, M., Gielen, B., Nijs, I. & Ceulemans, R. The observer effect in plant science. New Phytol. 177, 579–583 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Morrison, L. W. Observer error in vegetation surveys: a review. J. Plant Ecol. 9, 367–379 (2016).

    Article 

    Google Scholar 

  • 35.

    Kéry, M. & Gregg, K. B. Effects of life-state on detectability in a demographic study of the terrestrial orchid Cleistes bifaria. J. Ecol. 91, 265–273 (2003).

    Article 

    Google Scholar 

  • 36.

    Allioni, C. Flora Pedemontana: Sive Enumeratio Methodica Stirpium Indigenarum Pedemontii Vol. 1 (Joannes Michael Briolus, 1785).

  • 37.

    Aeschimann, D., Rasolofo, N. & Theurillat, J.-P. Analyse de la flore des alpes. 1: Historique et biodiversité. Candollea 66, 27–55 (2011).

    Article 

    Google Scholar 

  • 38.

    Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Julve, P. Baseflor. Index Botanique, Ecologique et Chorologique de la Flore de France http://philippe.julve.pagesperso-orange.fr/baseflor.xlsx (1998).

  • 40.

    Bartolucci, F. et al. An updated checklist of the vascular flora native to Italy. Plant Biosyst. 152, 179–303 (2018).

    Article 

    Google Scholar 

  • 41.

    Web of Science (Clarivate Analytics, accessed 16 March 2020); https://www.webofknowledge.com

  • 42.

    Kalwij, J. M. Review of ‘The Plant List, a working list of all plant species’. J. Veg. Sci. 23, 998–1002 (2012).

    Article 

    Google Scholar 

  • 43.

    Konno, K. et al. Ignoring non‐English‐language studies may bias ecological meta‐analyses. Ecol. Evol. 10, 6373–6384 (2020).

  • 44.

    Heaton, L., Millerand, F. & Proulx, S. Tela Botanica: une fertilisation croisée des amateurs et des experts. Hermès 57, 61–68 (2010).

  • 45.

    Lauber, K., Wagner, G. & Gygax, A. Flora Helvetica: Illustrierte Flora der Schweiz (Haupt Verlag, 2018).

  • 46.

    Landolt, E. et al. Flora Indicativa: Okologische Zeigerwerte und Biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).

  • 47.

    The IUCN Red List of Threatened Species (IUCN, 2020).

  • 48.

    Global Biodiversity Information Facility (2020); https://www.gbif.org

  • 49.

    Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform. 19, 10–15 (2014).

    Article 

    Google Scholar 

  • 50.

    Shirey, V., Belitz, M. W., Barve, V. & Guralnick, R. A complete inventory of North American butterfly occurrence data: narrowing data gaps, but increasing bias. Ecography 44, 537–547 (2021).

    Article 

    Google Scholar 

  • 51.

    R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 52.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar 

  • 53.

    Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 54.

    Bartoń, K. MuMIn: multi-model inference. R package version 1.43.17 https://cran.r-project.org/package=MuMIn (2020).

  • 55.

    Barbosa, A. M., Real, R., Munoz, A. R. & Brown, J. A. New measures for assessing model equilibrium and prediction mismatch in species distribution models. Divers. Distrib. 19, 1333–1338 (2013).

    Article 

    Google Scholar 

  • 56.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1 (2015).

    Article 

    Google Scholar 

  • 57.

    Blasco-Moreno, A., Pérez-Casany, M., Puig, P., Morante, M. & Castells, E. What does a zero mean? Understanding false, random and structural zeros in ecology. Methods Ecol. Evol. 10, 949–959 (2019).

    Article 

    Google Scholar 

  • 58.

    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Assessment, testing and comparison of statistical models using R. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/vtq8f (2021).


  • Source: Ecology - nature.com

    Ekotrope makes building energy-efficient homes easier

    Using mechanics for cleaner membranes