in

The severity and extent of the Australia 2019–20 Eucalyptus forest fires are not the legacy of forest management

  • 1.

    Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. USA 116, 6193–6198 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Enright, N. J., Fontaine, J. B., Bowman, D. M. J. S., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).

    Article 

    Google Scholar 

  • 4.

    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article 

    Google Scholar 

  • 6.

    Keeley, J. E., van Mantgem, P. & Falk, D. A. Fire, climate and changing forests. Nat. Plants 5, 774–775 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Lindenmayer, D. B., Kooyman, R. M., Taylor, C., Ward, M. & Watson, J. E. Recent Australian wildfires made worse by logging and associated forest management. Nat. Ecol. Evol. 4, 898–900 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Murphy, B. P. et al. Fire regimes of Australia: a pyrogeographic model system. J. Biogeogr. 40, 1048–1058 (2013).

    Article 

    Google Scholar 

  • 9.

    Poulos, H. M., Barton, A. M., Slingsby, J. A. & Bowman, D. M. J. S. Do mixed fire regimes shape plant flammability and post-fire recovery strategies? Fire 1, 39 (2018).

    Article 

    Google Scholar 

  • 10.

    Cawson, J. G. et al. Exploring the key drivers of forest flammability in wet eucalypt forests using expert-derived conceptual models. Landsc. Ecol. 35, 1775–1798 (2020).

    Article 

    Google Scholar 

  • 11.

    Thomas, P. B., Watson, P. J., Bradstock, R. A., Penman, T. D. & Price, O. Modelling surface fine fuel dynamics across climate gradients in eucalypt forests of south‐eastern Australia. Ecography 37, 827–837 (2014).

    Article 

    Google Scholar 

  • 12.

    Bennett, L. T. et al. Mortality and recruitment of fire-tolerant eucalypts as influenced by wildfire severity and recent prescribed fire. For. Ecol. Manag. 380, 107–117 (2016).

    Article 

    Google Scholar 

  • 13.

    Fairman, T. A., Bennett, L. T., Tupper, S. & Nitschke, C. R. Frequent wildfires erode tree persistence and alter stand structure and initial composition of a fire‐tolerant sub‐alpine forest. J. Veg. Sci. 28, 1151–1165 (2017).

    Article 

    Google Scholar 

  • 14.

    Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Impact of high-severity fire in a Tasmanian dry eucalypt forest. Aust. J. Bot. 64, 193–205 (2016).

    Article 

    Google Scholar 

  • 15.

    Bassett, O. D., Prior, L. D., Slijkerman, C. M., Jamieson, D. & Bowman, D. M. J. S. Aerial sowing stopped the loss of alpine ash (Eucalyptus delegatensis) forests burnt by three short-interval fires in the Alpine National Park, Victoria, Australia. For. Ecol. Manag. 342, 39–48 (2015).

    Article 

    Google Scholar 

  • 16.

    Bowman, D. et al. Wildfires: Australia needs national monitoring agency. Nature 584, 188–191 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Change 10, 177–179 (2020).

    Article 

    Google Scholar 

  • 18.

    Sharples, J. J. et al. Natural hazards in Australia: extreme bushfire. Clim. Change 139, 85–99 (2016).

    Article 

    Google Scholar 

  • 19.

    Bowman, D. M. J. S., Williamson, G. J., Price, O. F., Ndalila, M. N. & Bradstock, R. A. Australian forests, megafires and the risk of dwindling carbon stocks. Plant, Cell Environ. 44, 347–355 (2020).

  • 20.

    Khaykin, S. et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ. 1, 22 (2020).

    Article 

    Google Scholar 

  • 21.

    Borchers Arriagada, N. et al. Unprecedented smoke-related health burden associated with the 2019–20 bushfires in eastern Australia. Med. J. Aust. 213, 282–283 (2020).

  • 22.

    Johnston, F. H. et al. Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires. Nat. Sustain. 4, 42–47 (2021).

    Article 

    Google Scholar 

  • 23.

    Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 4, 1321–1326 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Bowman, D. M. J. S., Williamson, G. J., Prior, L. D. & Murphy, B. P. The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Glob. Ecol. Biogeogr. 25, 1166–1172 (2016).

    Article 

    Google Scholar 

  • 25.

    Povak, N. A., Kane, V. R., Collins, B. M., Lydersen, J. M. & Kane, J. T. Multi-scaled drivers of severity patterns vary across land ownerships for the 2013 Rim Fire, California. Landsc. Ecol. 35, 293–318 (2020).

    Article 

    Google Scholar 

  • 26.

    Parks, S. A. et al. High-severity fire: evaluating its key drivers and mapping its probability across western US forests. Environ. Res. Lett. 13, 044037 (2018).

    Article 

    Google Scholar 

  • 27.

    Fang, L., Yang, J., Zu, J., Li, G. & Zhang, J. Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. For. Ecol. Manag. 356, 2–12 (2015).

    Article 

    Google Scholar 

  • 28.

    Thompson, J. R. & Spies, T. A. Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. For. Ecol. Manag. 258, 1684–1694 (2009).

    Article 

    Google Scholar 

  • 29.

    Stephens, S. L. et al. Fire and climate change: conserving seasonally dry forests is still possible. Front. Ecol. Environ. 18, 354–360 (2020).

    Article 

    Google Scholar 

  • 30.

    Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: implications for a warming world. Glob. Change Biol. 26, 6062–6079 (2020).

    Article 

    Google Scholar 

  • 31.

    Nolan, R. H. et al. Causes and consequences of eastern Australia’s 2019–20 season of mega‐fires. Glob. Change Biol. 26, 1039–1041 (2020).

  • 32.

    Boer, M. M., Resco de Dios, V. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10, 171–172 (2020).

    Article 

    Google Scholar 

  • 33.

    van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).

    Article 

    Google Scholar 

  • 34.

    Adams, M. A., Shadmanroodposhti, M. & Neumann, M. Letter to the Editor. Causes and consequences of Eastern Australia’s 2019‐20 season of mega‐fires: a broader perspective. Glob. Change Biol. 26, 3756–3758 (2020).

  • 35.

    Lindenmayer, D. B. & Taylor, C. New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proc. Natl Acad. Sci. USA 117, 12481–12485 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. & Banks, S. C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl Acad. Sci. USA 108, 15887–15891 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Taylor, C., McCarthy, M. A. & Lindenmayer, D. B. Nonlinear effects of stand age on fire severity. Conserv. Lett. 7, 355–370 (2014).

    Article 

    Google Scholar 

  • 38.

    Collins, L., Griffioen, P., Newell, G. & Mellor, A. The utility of Random Forests for wildfire severity mapping. Remote Sens. Environ. 216, 374–384 (2018).

    Article 

    Google Scholar 

  • 39.

    Gibson, R., Danaher, T., Hehir, W. & Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 240, 111702 (2020).

    Article 

    Google Scholar 

  • 40.

    Collins, L., Bradstock, R. & Penman, T. Can precipitation influence landscape controls on wildfire severity? A case study within temperate eucalypt forests of south-eastern Australia. Int. J. Wildland Fire 23, 9–20 (2014).

    Article 

    Google Scholar 

  • 41.

    Price, O. F. & Bradstock, R. A. The efficacy of fuel treatment in mitigating property loss during wildfires: insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 113, 146–157 (2012).

    Article 

    Google Scholar 

  • 42.

    Storey, M., Price, O. & Tasker, E. The role of weather, past fire and topography in crown fire occurrence in eastern Australia. Int. J. Wildland Fire 25, 1048–1060 (2016).

    Article 

    Google Scholar 

  • 43.

    Bradstock, R. A., Hammill, K. A., Collins, L. & Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 25, 607–619 (2010).

    Article 

    Google Scholar 

  • 44.

    Taylor, C., Blanchard, W. & Lindenmayer, D. B. Does forest thinning reduce fire severity in Australian eucalypt forests? Conserv. Lett. https://doi.org/10.1111/conl.12766 (2020).

  • 45.

    Lydersen, J. M. et al. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol. Appl. 27, 2013–2030 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).

    Article 

    Google Scholar 

  • 47.

    Bowman, D. M. J. S. et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio 48, 350–362 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Jackson, W. Fire, air, water and earth–an elemental ecology of Tasmania. Proc. Ecol. Soc. Aust. 3, 9–16 (1968).

    Google Scholar 

  • 49.

    Tolhurst, K. G. & McCarthy, G. Effect of prescribed burning on wildfire severity: a landscape-scale case study from the 2003 fires in Victoria. Aust. For. 79, 1–14 (2016).

    Article 

    Google Scholar 

  • 50.

    Gammage, B. The Biggest Estate on Earth: How Aborigines Made Australia (Allen & Unwin, 2011).

  • 51.

    Dargavel, J. Views and perspectives: why does Australia have ‘forest wars’? Int. Rev. Environ. Hist. 4, 33–51 (2018).

    Article 

    Google Scholar 

  • 52.

    Kanowski, P. J. Australia’s forests: contested past, tenure-driven present, uncertain future. For. Policy Econ. 77, 56–68 (2017).

    Article 

    Google Scholar 

  • 53.

    Australian Forest and Wood Products Statistics Mar-Jun 2019 (Australian Bureau of Agricultural and Resource Economics and Sciences, 2019).

  • 54.

    Ferguson, I. Australian plantations: mixed signals ahead. Int. For. Rev. 16, 160–171 (2014).

    Google Scholar 

  • 55.

    Raison, R. & Squire, R. Forest Management in Australia: Implications for Carbon Budgets Technical Report 32 (Australian Greenhouse Office, 2008).

  • 56.

    Proctor, E. & McCarthy, G. Changes in fuel hazard following thinning operations in mixed-species forests in East Gippsland, Victoria. Aust. For. 78, 195–206 (2015).

    Article 

    Google Scholar 

  • 57.

    NSW Regional Forest Agreements Assessment of Matters Pertaining to Renewal of Regional Forest Agreements (NSW Department of Primary Industries, 2018).

  • 58.

    Evans, J. spatialEco_. R package version 1.3-1 https://github.com/jeffreyevans/spatialEco (2020).

  • 59.

    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).

  • 60.

    Dowdy, A. J. Climatological variability of fire weather in Australia. J. Appl. Meteorol. Climatol. 57, 221–234 (2018).

    Article 

    Google Scholar 

  • 61.

    Hodges, J. S. & Reich, B. J. Adding spatially-correlated errors can mess up the fixed effect you love. Am. Stat. 64, 325–334 (2010).

    Article 

    Google Scholar 

  • 62.

    Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 57, 241–262 (2003).

    Article 

    Google Scholar 

  • 63.

    Kuhn, M. et al. caret: Classification and regression training. R package version 6.0-77 (2018).

  • 64.

    De Reu, J. et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 186, 39–49 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Ekotrope makes building energy-efficient homes easier

    Using mechanics for cleaner membranes