in

Erosion of tropical bird diversity over a century is influenced by abundance, diet and subtle climatic tolerances

  • 1.

    Turner, I. M. Species loss in fragments of tropical rain forest: a review of the evidence. J. Appl. Ecol. 33, 200–209 (1996).

    Article 

    Google Scholar 

  • 2.

    Pimm, S. L. & Raven, P. Biodiversity: extinction by numbers. Nature 403, 843 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Robinson, W. D. et al. Distribution of bird diversity in a vulnerable Neotropical landscape. Conserv. Biol. 18, 510–518 (2004).

    Article 

    Google Scholar 

  • 4.

    Rompré, G., Robinson, W. D. & Desrochers, A. Causes of habitat loss in a Neotropical landscape: The Panama Canal corridor. Landsc. Urban Plan. 87, 129–139 (2008).

    Article 

    Google Scholar 

  • 5.

    Diamond, J. Dammed experiments. Science 294, 1847 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Şekercioḡlu, Ç. H. et al. Disappearance of insectivorous birds from tropical forest fragments. Proc. Natl. Acad. Sci. USA 99, 263 (2002).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 7.

    Henle, K., Davies, K. F., Kleyer, M., Margules, C. & Settele, J. Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 13, 207–251 (2004).

    Article 

    Google Scholar 

  • 8.

    Stratford, J. A. & Robinson, W. D. Gulliver travels to the fragmented tropics: geographic variation in mechanisms of avian extinction. Front. Ecol. Environ. 3, 85–92 (2005).

    Article 

    Google Scholar 

  • 9.

    Robinson, W. D. & Sherry, T. W. Mechanisms of avian population decline and species loss in tropical forest fragments. J. Ornithol. 153, 141–152 (2012).

    Article 

    Google Scholar 

  • 10.

    Terborgh, J. Preservation of natural diversity: the problem of extinction prone species. Bioscience 24, 715–722 (1974).

    Article 

    Google Scholar 

  • 11.

    Karr, J. R. Population variability and extinction in the avifauna of a tropical land bridge island. Ecology 63, 1975–1978 (1982).

    Article 

    Google Scholar 

  • 12.

    Sieving, K. E. Nest predation and differential insular extinction among selected forest birds of central Panama. Ecology 73, 2310–2328 (1992).

    Article 

    Google Scholar 

  • 13.

    Bierregaard, R. O., Lovejoy, T. E., Kapos, V., dos Santos, A. A. & Hutchings, R. W. The biological dynamics of tropical rainforest fragments. Bioscience 42, 859–866 (1992).

    Article 

    Google Scholar 

  • 14.

    Laurance, W. F. Forest-climate interactions in fragmented tropical landscapes. Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 359, 345–352 (2004).

    Article 

    Google Scholar 

  • 15.

    Laurance, W. F. & Curran, T. J. Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral. Ecol. 33, 399–408 (2008).

    Article 

    Google Scholar 

  • 16.

    Stratford, J. A. & Stouffer, P. C. Forest fragmentation alters microhabitat availability for Neotropical terrestrial insectivorous birds. Biol. Conserv. 188, 109–115 (2015).

    Article 

    Google Scholar 

  • 17.

    Patten, M. A. & Smith-Patten, B. D. Testing the microclimate hypothesis: light environment and population trends of Neotropical birds. Biol. Conserv. 155, 85–93 (2012).

    Article 

    Google Scholar 

  • 18.

    Ausprey, I. J., Newell, F. L. & Robinson, S. K. Adaptations to light predict the foraging niche and disassembly of avian communities in tropical countrysides. Ecology 102, e03213 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Busch, D. S., Robinson, W. D., Robinson, T. R. & Wingfield, J. C. Influence of proximity to a geographical range limit on the physiology of a tropical bird. J. Anim. Ecol. 80, 640–649 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Stouffer, P. C. & Bierregaard, R. O. Use of Amazonian forest fragments by understory insectivorous birds. Ecology 76, 2429–2445 (1995).

    Article 

    Google Scholar 

  • 21.

    Ferraz, G. et al. Rates of species loss from Amazonian forest fragments. Proc. Natl. Acad. Sci. 100, 14069–14073 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Brooks, T. M., Pimm, S. L. & Oyugi, J. O. Time lag between deforestation and bird extinction in tropical forest fragments. Conserv. Biol. 13, 1140–1150 (1999).

    Article 

    Google Scholar 

  • 23.

    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 24.

    Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Kattan, G. H., Alvarez-López, H. & Giraldo, M. Forest fragmentation and bird extinctions: San Antonio eighty years later. Conserv. Biol. 8, 138–146 (1994).

    Article 

    Google Scholar 

  • 26.

    Christiansen, M. B. & Pitter, E. Species loss in a forest bird community near Lagoa Santa in southeastern Brazil. Biol. Conserv. 80, 23–32 (1997).

    Article 

    Google Scholar 

  • 27.

    Laurance, W. F. et al. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618 (2002).

    Article 

    Google Scholar 

  • 28.

    Sigel, B. J., Sherry, T. W. & Young, B. E. Avian community response to lowland tropical rainforest isolation: 40 years of change at La Selva biological station, Costa Rica. Conserv. Biol. 20, 111–121 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 29.

    Stouffer, P. C., Bierregaard, R. O., Strong, C. & Lovejoy, T. E. Long-term landscape change and bird abundance in amazonian rainforest fragments. Conserv. Biol. 20, 1212–1223 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Moura, N. G. et al. Two hundred years of local avian extinctions in Eastern Amazonia. Conserv. Biol. 28, 1271–1281 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Foster, R. B. & Brokaw, N. V. Structure and History of the Vegetation of Barro Colorado Island (1982).

  • 33.

    Leigh, E. G. Tropical Forest Ecology: A View from Barro Colorado Island (Oxford University Press, 1999).

    Google Scholar 

  • 34.

    Panama Canal Authority (ACP). Meteorology and Hydrology Branch. http://www.pancanal.com (2016).

  • 35.

    ANAM. Informe Final de Resultados de la Cobertura Boscosa y uso del Suelo de la Republica de Panamá 1992–2000 (La Autoridad Nacional para el Ambiente (ANAM) y The International Tropical Timber Organization Panamá, 2003).

  • 36.

    Paton, S. 2017 Meterological and Hydrological Summary for Barro Colorado Island (2018).

  • 37.

    Rompré, G., Robinson, W. D., Desrochers, A. & Angehr, G. Environmental correlates of avian diversity in lowland Panama rain forests. J. Biogeogr. 34, 802–815 (2007).

    Article 

    Google Scholar 

  • 38.

    Karr, J. R. Avian extinction on Barro Colorado island, Panama: a reassessment. Am. Nat. 119, 220–239 (1982).

    Article 

    Google Scholar 

  • 39.

    Willis, E. O. Populations and local extinctions of birds on Barro Colorado Island, Panama. Ecol. Monogr. 44, 153–169 (1974).

    Article 

    Google Scholar 

  • 40.

    Robinson, W. D. Long-term changes in the avifauna of Barro Colorado Island, Panama, a tropical forest isolate. Conserv. Biol. 13, 85–97 (1999).

    Article 

    Google Scholar 

  • 41.

    Robinson, W. D., Robinson, T. R., Robinson, S. K. & Brawn, J. D. Nesting success of understory forest birds in central Panama. J. Avian Biol. 31, 151–164 (2000).

    Article 

    Google Scholar 

  • 42.

    Robinson, W. D. & Robinson, T. R. Observations of predation events at bird nests in central Panama. J. Field Ornithol. 72, 43–48 (2001).

    Article 

    Google Scholar 

  • 43.

    Robinson, W. D., Rompré, G. & Robinson, T. R. Videography of Panama bird nests shows snakes are principal predators. Ornitol. Neotrop. 16, 187–195 (2005).

    Google Scholar 

  • 44.

    Chapman, F. M. My Tropical Air Castle (D. Appleton and Co., 1929).

    Google Scholar 

  • 45.

    Chapman, F. M. Life in an Air Castle: Nature Studies in the Tropics (D. Appleton-Century Company, Incorporated, 1938).

    Google Scholar 

  • 46.

    Eisenmann, E. Annotated List of Birds of Barro Colorado Island, Panama Canal Zone Vol. 117 (Smithsonian Institution, 1952).

    Google Scholar 

  • 47.

    Willis, E. O. & Eisenmann, E. A revised list of birds of Barro Colorado Island, Panamá. Smithson. Contrib. Zool. https://doi.org/10.5479/si.00810282.291 (1979).

    Article 

    Google Scholar 

  • 48.

    Robinson, W. D. Changes in abundance of birds in a Neotropical forest fragment over 25 years: a review. Anim. Biodivers. Conserv. 24, 51–65 (2001).

    Google Scholar 

  • 49.

    Robinson, W. D., Brawn, J. D. & Robinson, S. K. Forest bird community structure in central Panama: influence of spatial scale and biogeography. Ecol. Monogr. 70, 209–235 (2000).

    Article 

    Google Scholar 

  • 50.

    Sodhi, N. S., Liow, L. H. & Bazzaz, F. A. Avian extinctions from tropical and subtropical forests. Annu. Rev. Ecol. Evol. Syst. 35, 323–345 (2004).

    Article 

    Google Scholar 

  • 51.

    Dunning, J. B. Jr. CRC Handbook of Avian Body Masses (CRC Press, 2007).

    Book 

    Google Scholar 

  • 52.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

    Google Scholar 

  • 53.

    McCune, B. & Mefford, M. J. PC-ORD. Multivariate Analysis of Ecological Data (MjM Software, 2011).

    Google Scholar 

  • 54.

    Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010).

    Article 

    Google Scholar 

  • 55.

    Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).

    Google Scholar 

  • 56.

    Navarrete, C. B. & Soares, F. C. dominanceanalysis: Dominance Analysis. R package version 1.0.0. (2019).

  • 57.

    McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior (1973).

  • 58.

    Menard, S. Coefficients of determination for multiple logistic regression analysis. Am. Stat. 54, 17–24 (2000).

    Google Scholar 

  • 59.

    McFadden, D. Quantitative methods for analyzing travel behaviour of individuals: some recent developments, Cowles Foundation Discussion Papers No. 474 (Cowles Foundation for Research in Economics, Yale University, 1977).

  • 60.

    Clark, W. A. & Hosking, P. L. Statistical Methods for Geographers. (1986).

  • 61.

    Walsh, C. & MacNally, R. Hier.Part: Hierarchical Partitioning. R package version 1.0-4. (2013).

  • 62.

    Harrell Jr, F. E. RMS: Regression Modeling Strategies. R package version 5.1-3. City (2019).

  • 63.

    Le Cessie, S. & Van Houwelingen, J. C. A goodness-of-fit test for binary regression models, based on smoothing methods. Biometrics 47, 1267–1282 (1991).

    MATH 
    Article 

    Google Scholar 

  • 64.

    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).

    Article 

    Google Scholar 

  • 65.

    Barbosa, A. M., Brown, J. A., Jimenez-Valverde, A. & Real, R. modEvA: Model Evaluation and Analysis. R package version 1.3.2. (2016).

  • 66.

    Suzuki, R., Shimodaira, H., Suzuki, M. R. & Suggests, M. Package ‘pvclust’. R Top. Doc. 14, 1540–1542 (2015).

    Google Scholar 

  • 67.

    Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 69.

    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 70.

    Oksanen, J. et al. Vegan: Community Ecology Package (2013).

  • 71.

    Moore, R. P. Biogeographic and Experimental Evidence for Local Scale Dispersal Limitation in Central Panamanian Forest Birds (Oregon State University, 2005).

    Google Scholar 

  • 72.

    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).

    PubMed 
    Article 

    Google Scholar 

  • 73.

    Moore, R. P., Robinson, W. D., Lovette, I. J. & Robinson, T. R. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Asquith, N. M. & Mejía-Chang, M. Mammals, edge effects, and the loss of tropical forest diversity. Ecology 86, 379–390 (2005).

    Article 

    Google Scholar 

  • 75.

    Wolda, H. Trends in abundance of tropical forest insects. Oecologia 89, 47–52 (1992).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Franks, N. R. A new method for censusing animal populations: the number of Eciton burchelli army ant colonies on Barro Colorado Island, Panama. Oecologia 52, 266–268 (1982).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Socolar, J. B. & Wilcove, D. S. Forest-type specialization strongly predicts avian responses to tropical agriculture. Proc. R. Soc. B 286, 20191724 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 78.

    Şekercioğlu, Ç. H., Primack, R. B. & Wormworth, J. The effects of climate change on tropical birds. Biol. Conserv. 148, 1–18 (2012).

    Article 

    Google Scholar 

  • 79.

    Karr, J. R. & Freemark, K. E. Habitat selection and environmental gradients: dynamics in the” stable” tropics. Ecology 64, 1481–1494 (1983).

    Article 

    Google Scholar 

  • 80.

    Ibarra-Macias, A., Robinson, W. D. & Gaines, M. S. Experimental evaluation of bird movements in a fragmented Neotropical landscape. Biol. Conserv. 144, 703–712 (2011).

    Article 

    Google Scholar 

  • 81.

    Stouffer, P. C. et al. Long-term change in the avifauna of undisturbed Amazonian rainforest: ground-foraging birds disappear and the baseline shifts. Ecol. Lett. 24, 186–195 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 82.

    Blake, J. G. & Loiselle, B. A. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change. PeerJ 3, e1177 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Legendre, P. & Condit, R. Spatial and temporal analysis of beta diversity in the Barro Colorado Island forest dynamics plot, Panama. For. Ecosyst. 6, 7 (2019).

    Article 

    Google Scholar 

  • 84.

    Condit, R., Pérez, R., Lao, S., Aguilar, S. & Hubbell, S. P. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. For. Ecosyst. 4, 17 (2017).

    Article 

    Google Scholar 

  • 85.

    Aguilar, E. et al. Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res.: Atmos. 110, 2064–2082 (2005).

    Article 

    Google Scholar 

  • 86.

    Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).

    Article 

    Google Scholar 

  • 87.

    Kaspari, M. & Weiser, M. D. Ant activity along moisture gradients in a neotropical forest 1. Biotropica 32, 703–711 (2000).

    Article 

    Google Scholar 

  • 88.

    Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).

    ADS 
    Article 

    Google Scholar 

  • 89.

    Levings, S. C. & Windsor, D. M. Litter moisture content as a determinant of litter arthropod distribution and abundance during the dry season on Barro Colorado Island, Panama. Biotropica 16, 125–131 (1984).

    Article 

    Google Scholar 

  • 90.

    Brawn, J. D., Benson, T. J., Stager, M., Sly, N. D. & Tarwater, C. E. Impacts of changing rainfall regime on the demography of tropical birds. Nat. Clim. Chang. 7, 133 (2017).

    ADS 
    Article 

    Google Scholar 

  • 91.

    Karp, D. S. et al. Agriculture erases climate-driven β-diversity in Neotropical bird communities. Glob. Change Biol. 24, 338–349 (2018).

    ADS 
    Article 

    Google Scholar 

  • 92.

    Frishkoff, L. O. et al. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345, 1343 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 93.

    Wright, S. J. How isolation affects rates of turnover of species on islands. Oikos 44, 331–340 (1985).

    Article 

    Google Scholar 

  • 94.

    Chadwick, R., Good, P., Martin, G. & Rowell, D. P. Large rainfall changes consistently projected over substantial areas of tropical land. Nat. Clim. Chang. 6, 177–181 (2016).

    ADS 
    Article 

    Google Scholar 

  • 95.

    Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Analytics platform for coastal desalination plants wins 2021 Water Innovation Prize

    Supplementation of Lactobacillus early in life alters attention bias to threat in piglets