Sikorski, J. A. & Gruys, K. J. Understanding glyphosate’s molecular mode of action with EPSP synthase: evidence favoring an allosteric inhibitor model. Acc. Chem. Res. 30, 2–8 (1997).
Google Scholar
Duke, S. O. & Powles, S. B. Glyphosate: a once‐in‐a‐century herbicide. Pest Manag. Sci. 64, 319–325 (2008).
Google Scholar
Siehl, D. L. Inhibitors of EPSP synthase, glutamine synthetase and histidine synthesis. In Herbicide Activity: Toxicology, Biochemistry and Molecular Biology, vol. 1 (eds. Michael Roe, R., Burton, J. D. & Kuhr, R. J.) 37 (IOS Press, 1997).
Shilo, T., Zygier, L., Rubin, B., Wolf, S. & Eizenberg, H. Mechanism of glyphosate control of Phelipanche aegyptiaca. Planta 244, 1095–1107 (2016).
Google Scholar
Tzin, V. & Galili, G. New Insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant 3, 956–972 (2010).
Google Scholar
McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110, 3229–3236 (2013).
Google Scholar
Hacker, S. D. & Gaines, S. D. Some implications of direct positive interactions for community species diversity. Ecology 78, 1990–2003 (1997).
Google Scholar
van den Bosch, T. J. M. & Welte, C. U. Detoxifying symbionts in agriculturally important pest insects. Microb. Biotechnol. 10, 531–540 (2017).
Google Scholar
Lemoine, M. M., Engl, T. & Kaltenpoth, M. Microbial symbionts expanding or constraining abiotic niche space in insects. Curr. Opin. Insect Sci. 39, 14–20 (2020).
Google Scholar
Feldhaar, H. Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol. Entomol. 36, 533–543 (2011).
Google Scholar
Moran, N. A. Symbiosis. Curr. Biol. 16, R866–R871 (2006).
Google Scholar
Moran, N. A. & Telang, A. Bacteriocyte-associated symbionts of insects. Bioscience 48, 295–304 (1998).
Google Scholar
Oliver, K. M. & Martinez, A. J. How resident microbes modulate ecologically-important traits of insects. Curr. Opin. Insect Sci. 4, 1–7 (2014).
Google Scholar
Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).
Google Scholar
Douglas, A. E. The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes. Curr. Opin. Insect Sci. 23, 65–69 (2017).
Google Scholar
Vigneron, A. et al. Insects recycle endosymbionts when the benefit is over. Curr. Biol. 24, 2267–2273 (2014).
Google Scholar
Andersen, S. O. Cuticular sclerotization and tanning. In Insect Molecular Biology and Biochemistry (ed. Gilbert, L. I.) 167–192 (Elsevier, 2012).
Anbutsu, H. & Fukatsu, T. Symbiosis for insect cuticle formation. In Cellular Dialogues in the Holobiont (eds. Bosch, T. C. G. & Hadfield, M. G.) 201–216 (CRC Press, 2020).
Anbutsu, H. et al. Small genome symbiont underlies cuticle hardness in beetles. Proc. Natl. Acad. Sci. USA 114, E8382–E8391 (2017).
Google Scholar
Li, A. P. & Long, T. J. An evaluation of the genotoxic potential of glyphosate. Fundam. Appl. Toxicol. 10, 537–546 (1988).
Google Scholar
Smith, E. A. & Oehme, F. W. The biological activity of glyphosate to plants and animals: a literature review. Vet. Hum. Toxicol. 34, 531–543 (1992).
Google Scholar
Smith, D. F. Q. et al. Glyphosate inhibits melanization and increases insect susceptibility to infection. bioRxiv (2020).
Torretta, V., Katsoyiannis, I., Viotti, P. & Rada, E. Critical review of the effects of glyphosate exposure to the environment and humans through the food supply chain. Sustainability 10, 950 (2018).
Google Scholar
Snyder, A. K. & Rio, R. V. M. “Wigglesworthia morsitans” folate (Vitamin B 9) biosynthesis contributes to tsetse host fitness. Appl. Environ. Microbiol. 81, 5375–5386 (2015).
Google Scholar
Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA 115, 10305–10310 (2018).
Google Scholar
Motta, E. V. S. et al. Oral or topical exposure to glyphosate in herbicide formulation impacts the gut microbiota and survival rates of honey bees. Appl. Environ. Microbiol. 86, e01150–20 (2020).
Google Scholar
Klein, A. et al. A novel intracellular mutualistic bacterium in the invasive ant Cardiocondyla obscurior. ISME J 10, 376–388 (2016).
Google Scholar
Wu, D. et al. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol. 4, e188 (2006).
Google Scholar
Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B Biol. Sci 364, 1711–1723 (2009).
Google Scholar
Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
Google Scholar
Memmott, J. et al. Biodiversity loss and ecological network structure. In Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J. A.) 325–347 (Oxford University Press, 2005).
Liao, C., Upadhyay, A., Liang, J., Han, Q. & Li, J. 3,4-Dihydroxyphenylacetaldehyde synthase and cuticle formation in insects. Dev. Comp. Immunol. 83, 44–50 (2018).
Google Scholar
Muthukrishnan, S., Merzendorfer, H., Arakane, Y. & Kramer, K. J. Chitin metabolism in insects. In Insect Molecular Biology and Biochemistry (ed. Gilbert, L. I.) 193–235 (Elsevier, 2012).
Wirtz, R. A. & Hopkins, T. L. Tyrosine and phenylalanine concentrations in haemolymph and tissues of the American cockroach, Periplaneta americana, during metamorphosis. J. Insect Physiol. 20, 1143–1154 (1974).
Google Scholar
Gibbs, A. G. & Rajpurohit, S. Cuticular lipids and water balance. In Insect Hydrocarbons (eds Blomquist, G. J. & Bagneres, A. -G.) 100–120 (Cambridge University Press, 2010).
Hackman, R. H. Chemistry of the insect cuticle. in The Physiology of Insecta (ed. Rodstein, M.) 215–270 (Academic Press, 1974).
Mattson, W. J. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119–161 (1980).
Google Scholar
Kumar, V. et al. Amino acids distribution in economical important plants: a review. Biotechnol. Res. Innov 3, 197–207 (2019).
Google Scholar
Noh, M. Y., Muthukrishnan, S., Kramer, K. J. & Arakane, Y. Cuticle formation and pigmentation in beetles. Curr. Opin. Insect Sci. 17, 1–9 (2016).
Google Scholar
Sterkel, M. et al. Tyrosine detoxification is an essential trait in the life history of blood-feeding arthropods. Curr. Biol. 26, 2188–2193 (2016).
Google Scholar
Herrmann, K. M. & Weaver, L. M. The shikimate pathway. Annu. Rev. Plant Biol. 50, 473–503 (1999).
Google Scholar
Engl, T. et al. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol. Ecol. 27, 2095–2108 (2018).
Google Scholar
Hirota, B. et al. A novel, extremely elongated, and endocellular bacterial symbiont supports cuticle formation of a grain pest beetle. MBio 8, 1–16 (2017).
Google Scholar
Boyer, S., Zhang, H. & Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 102, 213 (2012).
Google Scholar
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
Google Scholar
Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).
Google Scholar
McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10, 13–26 (2012).
Google Scholar
Van Leuven, J. T., Meister, R. C., Simon, C. & McCutcheon, J. P. Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 158, 1270–1280 (2014).
Google Scholar
Campbell, M. A., Łukasik, P., Simon, C. & McCutcheon, J. P. Idiosyncratic genome degradation in a bacterial endosymbiont of periodical cicadas. Curr. Biol. 27, 3568–3575.e3 (2017).
Google Scholar
Campbell, M. A. et al. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. Proc. Natl. Acad. Sci. USA 112, 10192–10199 (2015).
Google Scholar
Chen, Y. C., Liu, T., Yu, C. H., Chiang, T. Y. & Hwang, C. C. Effects of GC bias in next-generation-sequencing data on de novo genome assembly. PLoS ONE 8, e62856 (2013).
Google Scholar
Kozarewa, I. et al. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+ C)-biased genomes. Nat. Methods 6, 291–295 (2009).
Google Scholar
Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13, 1–13 (2012).
Google Scholar
Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2012).
Google Scholar
Sloan, D. B. et al. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol. Biol. Evol. 31, 857–871 (2014).
Google Scholar
Zucko, J. et al. Global genome analysis of the shikimic acid pathway reveals greater gene loss in host-associated than in free-living bacteria. BMC Genomics 11, 628 (2010).
Google Scholar
Tokuda, G. et al. Maintenance of essential amino acid synthesis pathways in the Blattabacterium cuenoti symbiont of a wood-feeding cockroach. Biol. Lett. 9, 20121153 (2013).
Google Scholar
Kinjo, Y. et al. Parallel and gradual genome erosion in the Blattabacterium endosymbionts of Mastotermes darwiniensis and Cryptocercus Wood Roaches. Genome Biol. Evol. 10, 1622–1630 (2018).
Google Scholar
Menzel, R. & Roth, J. Purification of the putA gene product. A bifunctional membrane-bound protein from Salmonella typhimurium responsible for the two-step oxidation of proline to glutamate. J. Biol. Chem. 256, 9755–9761 (1981).
Google Scholar
Zhou, Y., Zhu, W., Bellur, P. S., Rewinkel, D. & Becker, D. F. Direct linking of metabolism and gene expression in the proline utilization a protein from Escherichia coli. Amino Acids 35, 711–718 (2008).
Google Scholar
Sabree, Z. L., Kambhampati, S. & Moran, N. A. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc. Natl. Acad. Sci. USA 106, 19521–19526 (2009).
Google Scholar
McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc. Natl. Acad. Sci. USA 106, 15394–15399 (2009).
Google Scholar
Sabree, Z. L., Huang, C. Y., Okusu, A., Moran, N. A. & Normark, B. B. The nutrient supplying capabilities of Uzinura, an endosymbiont of armoured scale insects. Environ. Microbiol. 15, 1988–1999 (2013).
Google Scholar
Rosas-Pérez, T., Rosenblueth, M., Rincón-Rosales, R., Mora, J. & Martínez-Romero, E. Genome Sequence of “Candidatus Walczuchella monophlebidarum” the Flavobacterial endosymbiont of Llaveia axin axin (Hemiptera: Coccoidea: Monophlebidae). Genome Biol. Evol. 6, 714–726 (2014).
Google Scholar
Kuriwada, T. et al. Biological role of Nardonella endosymbiont in its weevil host. PLoS ONE 5, e13101 (2010).
Google Scholar
Okude, G. et al. Novel bacteriocyte-associated pleomorphic symbiont of the grain pest beetle Rhyzopertha dominica (Coleoptera: Bostrichidae). Zool. Lett. 3, 13 (2017).
Google Scholar
Hirota, B., Meng, X.-Y. & Fukatsu, T. Bacteriome-sssociated rndosymbiotic bacteria of Nosodendron tree sap beetles (Coleoptera: Nosodendridae). Front. Microbiol. 11, 2556 (2020).
Google Scholar
Hopkins, T. L. & Kramer, K. J. Insect cuticle sclerotization. Annu. Rev. Entomol. 37, 273–302 (1992).
Google Scholar
Andersen, S. O. Insect cuticular sclerotization: a review. Insect Biochem. Mol. Biol. 40, 166–178 (2010).
Google Scholar
Cao, G. et al. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants. PLoS ONE 7, e38718 (2012).
Google Scholar
Moran, N. A. & Bennett, G. M. The tiniest tiny genomes. Annu. Rev. Microbiol. 68, 195–215 (2014).
Google Scholar
McCutcheon, J. P., Boyd, B. M. & Dale, C. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 29, R485–R495 (2019).
Google Scholar
Salem, H. et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171, 1520–1531 (2017).
Google Scholar
Reis, F. et al. Bacterial symbionts support larval sap feeding and adult folivory in (semi-) aquatic reed beetles. Nat. Commun. 11, 1–15 (2020).
Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc. R. Soc. B Biol. Sci. 282, 20142957 (2015).
Google Scholar
Salem, H. et al. Symbiont digestive range reflects host plant breadth in herbivorous beetles. Curr. Biol. 30, 2875–2886 (2020).
Google Scholar
Hansen, A. K., Pers, D. & Russell, J. A. Symbiotic solutions to nitrogen limitation and amino acid imbalance in insect diets. In Mechanisms Underlying Microbial Symbiosis, vol. 58 (ed. Kerry M. Oliver, J. A. R.) 161–205 (Academic Press, 2020).
Tanner, J. J. Structural biology of proline catabolism. Amino Acids 35, 719–730 (2008).
Google Scholar
Adams, E. & Frank, L. Metabolism of proline and the hydroxyprolines. Annu. Rev. Biochem. 49, 1005–61 (1980).
Google Scholar
Bursell, E. The role of proline in energy metabolism.In Energy Metabolism in Insects (ed. Downer R.G.H.) 135–154 (Springer, Boston, 1981).
Engl, T., Schmidt, T. H. P., Kanyile, S. N. & Klebsch, D. Metabolic cost of a nutritional symbiont manifests in delayed reproduction in a grain pest beetle. Insects 11, 717 (2020).
Google Scholar
José de Souza, D., Devers, S. & Lenoir, A. Blochmannia endosymbionts and their host, the ant Camponotus fellah: cuticular hydrocarbons and melanization. C. R. Biol. 334, 737–741 (2011).
Google Scholar
Zientz, E., Beyaert, I., Gross, R. & Feldhaar, H. Relevance of the endosymbiosis of Blochmannia floridanus and carpenter ants at different stages of the life cycle of the host. Appl. Environ. Microbiol. 72, 6027–6033 (2006).
Google Scholar
Oakeson, K. F. et al. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol. Evol. 6, 76–93 (2013).
Google Scholar
Chong, R. A. & Moran, N. A. Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME J 12, 898–908 (2018).
Google Scholar
McCutcheon, J. P. & Moran, N. A. Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol. Evol. 2, 708–718 (2010).
Google Scholar
Gerth, M., Gansauge, M. T., Weigert, A. & Bleidorn, C. Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nat. Commun. 5, 1–7 (2014).
Google Scholar
Santos-Garcia, D., Silva, F. J., Morin, S., Dettner, K. & Kuechler, S. M. The all-rounder Sodalis: a new bacteriome-associated endosymbiont of the Lygaeoid bug Henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol. Evol. 9, 2893–2910 (2017).
Google Scholar
Motta, E. V. S. & Moran, N. A. Impact of glyphosate on the honey bee gut microbiota: effects of intensity, duration, and timing of exposure. Msystems 5, e00268–20 (2020).
Google Scholar
Helander, M., Pauna, A., Saikkonen, K. & Saloniemi, I. Glyphosate residues in soil affect crop plant germination and growth. Sci. Rep. 9, 19653 (2019).
Google Scholar
Kiers, E. T., Rousseau, R. A., West, S. A. & Denlson, R. F. Host sanctions and the legume-rhizobium mutualism. Nature 425, 78–81 (2003).
Google Scholar
Whiteside, M. D., Digman, M. A., Gratton, E. & Treseder, K. K. Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol. Biochem. 55, 7–13 (2012).
Google Scholar
Faita, M. R., Cardozo, M. M., Amandio, D. T. T., Orth, A. I. & Nodari, R. O. Glyphosate-based herbicides and Nosema sp. microsporidia reduce honey bee (Apis mellifera L.) survivability under laboratory conditions. J. Apic. Res. 59, 1–11 (2020).
Google Scholar
Wilson, A. C. C. et al. Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola. Insect Mol. Biol. 19, 249–258 (2010).
Google Scholar
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Google Scholar
Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).
Google Scholar
Desneux, N., Decourtye, A. & Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2007).
Google Scholar
Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971 (2019).
Google Scholar
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
Google Scholar
Hayes, T. B. & Hansen, M. From silent spring to silent night: agrochemicals and the anthropocene. Elem. Sci. Anthropol. 5, (2017).
Bowler, D. E., Heldbjerg, H., Fox, A. D., Jong, M. & Böhning‐Gaese, K. Long‐term declines of European insectivorous bird populations and potential causes. Conserv. Biol. 33, 1120–1130 (2019).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, 1–12 (2014).
Google Scholar
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
Google Scholar
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2015).
Google Scholar
Laczny, C. C. et al. BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation. Nucleic Acids Res. 45, W171–W179 (2017).
Google Scholar
Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 1–15 (2008).
Google Scholar
Arkin, A. P. et al. KBase: The United States department of energy systems biology knowledgebase. Nat. Biotechnol. 36, 566 (2018).
Google Scholar
Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).
Google Scholar
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
Google Scholar
Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).
Google Scholar
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
Google Scholar
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
Google Scholar
Brettin, T. et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 8365 (2015).
Google Scholar
Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).
Google Scholar
Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).
Google Scholar
Overbeek, R. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42, D206–14 (2014).
Google Scholar
Weiss, B. & Kaltenpoth, M. Bacteriome-localized intracellular symbionts in pollen-feeding beetles of the genus Dasytes (Coleoptera, Dasytidae). Front. Microbiol. 7, 1486 (2016).
Google Scholar
Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252 (1964).
Google Scholar
Tanahashi, M. Natsumushi: Image measuring software for entomological studies. Entomol. Sci. 21, 347–360 (2018).
Google Scholar
Pérez-Palacios, T., Barroso, M. A., Ruiz, J. & Antequera, T. A rapid and accurate extraction procedure for analysing free amino acids in meat samples by GC–MS. Int. J. Anal. Chem. 2015, 209214 (2015).
Google Scholar
Miller, R. G. Simultaneous Statistical Inference (Springer, 1981).
Engl, T., Kiefer, J.S.T. Data from: Inhibition of a nutritional endosymbiont by glyphosate abolishes mutualistic benefit on cuticle synthesis in Oryzaephilus surinamenis. Max Planck Soc. https://doi.org/10.17617/3.5l (2021).
Source: Ecology - nature.com